FROM RANDOM MATRICES TO RANDOM ANALYTIC FUNCTIONS

被引:58
|
作者
Krishnapur, Manjunath [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5E 2E4, Canada
来源
ANNALS OF PROBABILITY | 2009年 / 37卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Random analytic function; zeros; determinantal process; random matrix; Haar unitary; hyperbolic plane; invariant point process; EIGENVALUES; ZEROS;
D O I
10.1214/08-AOP404
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two families of random matrix-valued analytic functions: (1) G(1) - zG(2) and (2) G(0) + zG(1) + Z(2)G(2) + . . . , where G(i) are n x n random matrices with independent standard complex Gaussian entries. The random set of z where these matrix-analytic functions become singular is shown to be determinantal point processes in the sphere and the hyperbolic plane, respectively. The kernels of these determinantal processes are reproducing kernels of certain Hilbert spaces ("Bargmann-Fock spaces") of holomorphic functions on the corresponding Surfaces. Along with the new results, this also gives a unified framework in which to view a theorem of Peres and Virag (n = 1 in the second setting above) and a well-known result of Ginibre on Gaussian random matrices (which may be viewed as an analogue of our results in the whole plane).
引用
收藏
页码:314 / 346
页数:33
相关论文
共 50 条