Random Weighted Shifts on Hilbert Spaces of Analytic Functions

被引:0
|
作者
Ting Liu
Sen Zhu
机构
[1] Northeast Normal University,School of Mathematics and Statistics
[2] Jilin University,Department of Mathematics
来源
关键词
Shift operator; Random operator; Unitary equivalence; Approximate unitary equivalence; Multiplier; Hilbert spaces of analytic functions; Primary 47B80; 47B37; Secondary 60H25;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a bounded region in the complex plane and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} be a Hilbert space of analytic functions on G satisfying (a) zf∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf\in \mathcal {H}$$\end{document} for all f∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {H}$$\end{document}, and (b) {zn}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z^n\}_{n=0}^\infty $$\end{document} forms an orthogonal basis of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} with limn‖zn+1‖/‖zn‖=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _n\Vert z^{n+1}\Vert /\Vert z^n\Vert =1$$\end{document}. This paper aims to study a random counterpart of the shift operator on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}. We replace the weights wn=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_n=1$$\end{document} in the shift operator on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}, defined as Tzn=wnzn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tz^n=w_nz^{n+1}$$\end{document}, by a sequence of i.i.d. random variables {Xn}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X_n\}_{n=0}^\infty $$\end{document}; that is, wn=Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_n=X_n$$\end{document}. We call T a random weighted shift on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} with weights {Xn}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X_n\}_{n=0}^\infty $$\end{document}. In this paper we classify the samples of T according to five usual equivalence relations. We compare random weighted shifts acting on various Hilbert spaces of analytic functions, via a binary relation ⊲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lhd $$\end{document} borrowed from the representation theory of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras. Also we discuss the random Hardy space associated with T and, in certain case, determine the spectral picture of its multipliers.
引用
收藏
相关论文
共 50 条
  • [1] Random Weighted Shifts on Hilbert Spaces of Analytic Functions
    Liu, Ting
    Zhu, Sen
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (01)
  • [2] COMPOSITION OPERATORS ACTING ON WEIGHTED HILBERT SPACES OF ANALYTIC FUNCTIONS
    Hassanlou, Mostafa
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2015, 2 (01): : 71 - 79
  • [3] Compact composition operators on weighted Hilbert spaces of analytic functions
    Kellay, Karim
    Lefevre, Pascal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 718 - 727
  • [4] Frequently hypercyclic weighted backward shifts on spaces of real analytic functions
    Anahtarci, Berkay
    Kariksiz, Can Deha
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 3242 - 3249
  • [5] Co-Isometric Weighted Composition Operators on Hilbert Spaces of Analytic Functions
    María J. Martín
    Alejandro Mas
    Dragan Vukotić
    Results in Mathematics, 2020, 75
  • [6] Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space
    Oscar Blasco
    Pablo Galindo
    Mikael Lindström
    Alejandro Miralles
    Revista Matemática Complutense, 2019, 32 : 115 - 139
  • [7] Co-Isometric Weighted Composition Operators on Hilbert Spaces of Analytic Functions
    Martin, Maria J.
    Mas, Alejandro
    Vukotic, Dragan
    RESULTS IN MATHEMATICS, 2020, 75 (03)
  • [8] Complex symmetric generalized weighted composition operators on Hilbert spaces of analytic functions
    Lo, Ching -on
    Loh, Anthony Wai-keung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 523 (02)
  • [9] Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space
    Blasco, Oscar
    Galindo, Pablo
    Lindstrom, Mikael
    Miralles, Alejandro
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 115 - 139
  • [10] Analytic Extension of Functions from Analytic Hilbert Spaces*
    Kai Wang
    Chinese Annals of Mathematics, Series B, 2007, 28 : 321 - 326