FROM RANDOM MATRICES TO RANDOM ANALYTIC FUNCTIONS

被引:58
|
作者
Krishnapur, Manjunath [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5E 2E4, Canada
来源
ANNALS OF PROBABILITY | 2009年 / 37卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Random analytic function; zeros; determinantal process; random matrix; Haar unitary; hyperbolic plane; invariant point process; EIGENVALUES; ZEROS;
D O I
10.1214/08-AOP404
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two families of random matrix-valued analytic functions: (1) G(1) - zG(2) and (2) G(0) + zG(1) + Z(2)G(2) + . . . , where G(i) are n x n random matrices with independent standard complex Gaussian entries. The random set of z where these matrix-analytic functions become singular is shown to be determinantal point processes in the sphere and the hyperbolic plane, respectively. The kernels of these determinantal processes are reproducing kernels of certain Hilbert spaces ("Bargmann-Fock spaces") of holomorphic functions on the corresponding Surfaces. Along with the new results, this also gives a unified framework in which to view a theorem of Peres and Virag (n = 1 in the second setting above) and a well-known result of Ginibre on Gaussian random matrices (which may be viewed as an analogue of our results in the whole plane).
引用
收藏
页码:314 / 346
页数:33
相关论文
共 50 条
  • [31] Large deviations for functions of two random projection matrices
    Hiai, Fumio
    Petz, Denes
    ACTA SCIENTIARUM MATHEMATICARUM, 2006, 72 (3-4): : 581 - 609
  • [32] Convergence for noncommutative rational functions evaluated in random matrices
    Benoît Collins
    Tobias Mai
    Akihiro Miyagawa
    Félix Parraud
    Sheng Yin
    Mathematische Annalen, 2024, 388 : 543 - 574
  • [33] Distribution of the zeros of L-functions and random matrices
    Michel, P
    ASTERISQUE, 2002, (282) : 211 - 248
  • [34] Convergence for noncommutative rational functions evaluated in random matrices
    Collins, Benoit
    Mai, Tobias
    Miyagawa, Akihiro
    Parraud, Felix
    Yin, Sheng
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 543 - 574
  • [35] Determinantal polynomial wave functions induced by random matrices
    Mays, Anthony
    Ponsaing, Anita K.
    Paganin, David M.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [36] Spherical Functions Approach to Sums of Random Hermitian Matrices
    Kuijlaars, Arno B. J.
    Roman, Pablo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (04) : 1005 - 1029
  • [37] L-functions and the characteristic polynomials of random matrices
    Keating, J. P.
    Recent Perspectives in Random Matrix Theory and Number Theory, 2005, 322 : 251 - 277
  • [38] ON RANDOM MATRICES
    BALAKIN, GV
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (02): : 301 - &
  • [39] Hearing random matrices and random waves
    Berry, M. V.
    Shukla, Pragya
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [40] Random vicious walks and random matrices
    Baik, J
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2000, 53 (11) : 1385 - 1410