The value distribution of random analytic functions on the unit disk

被引:0
|
作者
Li, H. [1 ]
Ye, Z. [2 ]
机构
[1] China Univ Min & Technol Beijing, Sch Sci, Beijing 100083, Peoples R China
[2] Univ N Carolina, Dept Math & Stat, Wilmington, NC 28403 USA
基金
中国国家自然科学基金;
关键词
random variables; random Taylor series; Gaussian; Rademacher and Steinhaus analytic functions; value distribution theory; Nevanlinna's second main theorem;
D O I
10.1007/s10476-024-00041-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the value distributions of the random analytic functions on the unit disk of the form f omega(z)=& sum;j=0 infinity chi j(omega)ajzj,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_\omega(z)= \sum _{j=0}<^>{\infty}\chi_j(\omega) a_j z<^>j,$$\end{document} where aj is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_j\in\mathbb{C}$$\end{document} and chi j(omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_j(\omega)$$\end{document} are independent and identically distributed random variables defined on a probability space (Omega,F,mu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega, \mathcal{F}, \mu)$$\end{document}. Some of the theorems complement the work in [6], which deals with random entire functions. We first define a family of random analytic functions in the above form, which includes Gaussian, Rademacher, and Steinhaus analytic functions. Then we prove the relationship between the integrated counting function N(r,a,f omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(r, a, f_\omega)$$\end{document} and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} on the circle |z|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=r$$\end{document} as r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} is close to 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}. As a by-product, we obtain Nevanlinna's second main theorem on the unit disk. Finally, we show theorems on the maximum modulus of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} and f omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_\omega$$\end{document} on the unit disk.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 50 条