Craniofacial Reconstruction Using Gaussian Process Latent Variable Models

被引:4
|
作者
Xiao, Zedong [1 ]
Zhao, Junli [1 ,2 ]
Qiao, Xuejun [3 ]
Duan, Fuqing [1 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[2] Qingdao Univ, Coll Software & Technol, Qingdao 266071, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
关键词
GP-LVM; LSSVM; Craniofacial reconstruction; FACE RECONSTRUCTION; SKULL;
D O I
10.1007/978-3-319-23192-1_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Craniofacial reconstruction aims at estimating the facial outlook associated to a skull. It can be applied in victim identification, forensic medicine and archaeology. In this paper, we propose a craniofacial reconstruction method using Gaussian Process Latent Variable Models (GP-LVM). GP-LVM is used to represent the skull and face skin data in a low dimensional latent space respectively. The mapping from the skull to face skin is built in the latent spaces by using least square support vector machine (LSSVM) regression model. Experimental results show that the GP-LVM latent space improves the representation of craniofacial data and boosts the reconstruction results compared with the methods in literature.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [1] Classification of Streetsigns Using Gaussian Process Latent Variable Models
    Woeber, Wilfried
    Aburaia, Mohamed
    Olaverri-Monreal, Cristina
    [J]. 2019 8TH IEEE INTERNATIONAL CONFERENCE ON CONNECTED VEHICLES AND EXPO (IIEEE CCVE), 2019,
  • [2] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [3] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [4] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    [J]. PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [5] WiFi-SLAM Using Gaussian Process Latent Variable Models
    Ferris, Brian
    Fox, Dieter
    Lawrence, Neil
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2480 - 2485
  • [6] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [7] Estimation and visualization of process states using latent variable models based on Gaussian process
    Kaneko, Hiromasa
    [J]. ANALYTICAL SCIENCE ADVANCES, 2021, 2 (5-6): : 326 - 333
  • [8] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [9] Gaussian process latent variable models for fault detection
    Eciolaza, Luka
    Alkarouri, A.
    Lawrence, N. D.
    Kadirkamanathan, V.
    Fleming, P. J.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 287 - 292
  • [10] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047