Craniofacial Reconstruction Using Gaussian Process Latent Variable Models

被引:4
|
作者
Xiao, Zedong [1 ]
Zhao, Junli [1 ,2 ]
Qiao, Xuejun [3 ]
Duan, Fuqing [1 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[2] Qingdao Univ, Coll Software & Technol, Qingdao 266071, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
关键词
GP-LVM; LSSVM; Craniofacial reconstruction; FACE RECONSTRUCTION; SKULL;
D O I
10.1007/978-3-319-23192-1_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Craniofacial reconstruction aims at estimating the facial outlook associated to a skull. It can be applied in victim identification, forensic medicine and archaeology. In this paper, we propose a craniofacial reconstruction method using Gaussian Process Latent Variable Models (GP-LVM). GP-LVM is used to represent the skull and face skin data in a low dimensional latent space respectively. The mapping from the skull to face skin is built in the latent spaces by using least square support vector machine (LSSVM) regression model. Experimental results show that the GP-LVM latent space improves the representation of craniofacial data and boosts the reconstruction results compared with the methods in literature.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [41] A Gaussian Process Latent Variable Model for Subspace Clustering
    Li, Shangfang
    [J]. COMPLEXITY, 2021, 2021
  • [42] Multimodal Similarity Gaussian Process Latent Variable Model
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4168 - 4181
  • [43] A Gaussian Process Latent Variable Model for BRDF Inference
    Georgoulis, Stamatios
    Vanweddingen, Vincent
    Proesmans, Marc
    Van Gool, Luc
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3559 - 3567
  • [44] Generic inference in latent Gaussian process models
    Bonilla, Edwin V.
    Krauth, Karl
    Dezfouli, Amir
    [J]. Journal of Machine Learning Research, 2019, 20
  • [45] Gaussian process latent class choice models
    Sfeir, Georges
    Rodrigues, Filipe
    Abou-Zeid, Maya
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 136
  • [46] Generic Inference in Latent Gaussian Process Models
    Bonilla, Edwin V.
    Krauth, Karl
    Dezfouli, Amir
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [47] Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    Lawrence, N
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1783 - 1816
  • [48] Supervised latent linear Gaussian process latent variable model based classification
    Hou, Zhisong
    Feng, Qigao
    Zuo, Xiangang
    [J]. Journal of Computational Information Systems, 2013, 9 (13): : 5085 - 5092
  • [49] Supervised Latent Linear Gaussian Process Latent Variable Model for Dimensionality Reduction
    Jiang, Xinwei
    Gao, Junbin
    Wang, Tianjiang
    Zheng, Lihong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (06): : 1620 - 1632
  • [50] Supervised Gaussian Process Latent Variable Model Based on Gaussian Mixture Model
    Zhang, Jiayuan
    Zhu, Ziqi
    Zou, Jixin
    [J]. 2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 124 - 129