Generic inference in latent Gaussian process models

被引:0
|
作者
Bonilla, Edwin V. [1 ]
Krauth, Karl [2 ]
Dezfouli, Amir [1 ]
机构
[1] Machine Learning Research Group, CSIRO's Data61, Sydney,NSW,2015, Australia
[2] Department of Electrical Engineering and Computer Science, University of California, Berkeley,CA,94720-1776, United States
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Generic Inference in Latent Gaussian Process Models
    Bonilla, Edwin V.
    Krauth, Karl
    Dezfouli, Amir
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [2] Bayesian covariance estimation and inference in latent Gaussian process models
    Earls, Cecilia
    Hooker, Giles
    [J]. STATISTICAL METHODOLOGY, 2014, 18 : 79 - 100
  • [3] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381
  • [4] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    [J]. Machine Learning, 2021, 110 : 1105 - 1143
  • [5] Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
    Gal, Yarin
    van der Wilk, Mark
    Rasmussen, Carl E.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [6] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    [J]. MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [7] Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference
    Lalchand, Vidhi
    Ravuri, Aditya
    Lawrence, Neil D.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [8] A Gaussian Process Latent Variable Model for BRDF Inference
    Georgoulis, Stamatios
    Vanweddingen, Vincent
    Proesmans, Marc
    Van Gool, Luc
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3559 - 3567
  • [9] Perturbative Corrections for Approximate Inference in Gaussian Latent Variable Models
    Opper, Manfred
    Paquet, Ulrich
    Winther, Ole
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2857 - 2898
  • [10] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    [J]. PATTERN RECOGNITION, 2010, 6376 : 272 - 282