Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference

被引:0
|
作者
Lalchand, Vidhi [1 ]
Ravuri, Aditya [1 ]
Lawrence, Neil D. [1 ]
机构
[1] Univ Cambridge, Cambridge, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian process latent variable models (GPLVM) are a flexible and non-linear approach to dimensionality reduction, extending classical Gaussian processes to an unsupervised learning context. The Bayesian incarnation of the GPLVM [Titsias and Lawrence, 2010] uses a variational framework, where the posterior over latent variables is approximated by a well-behaved variational family, a factorised Gaussian yielding a tractable lower bound. However, the non-factorisability of the lower bound prevents truly scalable inference. In this work, we study the doubly stochastic formulation of the Bayesian GPLVM model amenable with minibatch training. We show how this framework is compatible with different latent variable formulations and perform experiments to compare a suite of models. Further, we demonstrate how we can train in the presence of massively missing data and obtain high-fidelity reconstructions.We demonstrate the model's performance by benchmarking against the canonical sparse GPLVM for high dimensional data examples.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
    Gal, Yarin
    van der Wilk, Mark
    Rasmussen, Carl E.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [2] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381
  • [3] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    [J]. MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [4] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    [J]. Machine Learning, 2021, 110 : 1105 - 1143
  • [5] Automated Variational Inference for Gaussian Process Models
    Nguyen, Trung, V
    Bonilla, Edwin, V
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [6] Generic Inference in Latent Gaussian Process Models
    Bonilla, Edwin V.
    Krauth, Karl
    Dezfouli, Amir
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [7] A Gaussian Process Latent Variable Model for BRDF Inference
    Georgoulis, Stamatios
    Vanweddingen, Vincent
    Proesmans, Marc
    Van Gool, Luc
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3559 - 3567
  • [8] Generation of Stochastic Interconnect Responses via Gaussian Process Latent Variable Models
    De Ridder, Simon
    Deschrijver, Dirk
    Manfredi, Paolo
    Dhaene, Tom
    Vande Ginste, Dries
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (02) : 582 - 585
  • [9] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [10] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +