Craniofacial Reconstruction Using Gaussian Process Latent Variable Models

被引:4
|
作者
Xiao, Zedong [1 ]
Zhao, Junli [1 ,2 ]
Qiao, Xuejun [3 ]
Duan, Fuqing [1 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[2] Qingdao Univ, Coll Software & Technol, Qingdao 266071, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
关键词
GP-LVM; LSSVM; Craniofacial reconstruction; FACE RECONSTRUCTION; SKULL;
D O I
10.1007/978-3-319-23192-1_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Craniofacial reconstruction aims at estimating the facial outlook associated to a skull. It can be applied in victim identification, forensic medicine and archaeology. In this paper, we propose a craniofacial reconstruction method using Gaussian Process Latent Variable Models (GP-LVM). GP-LVM is used to represent the skull and face skin data in a low dimensional latent space respectively. The mapping from the skull to face skin is built in the latent spaces by using least square support vector machine (LSSVM) regression model. Experimental results show that the GP-LVM latent space improves the representation of craniofacial data and boosts the reconstruction results compared with the methods in literature.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [31] Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models
    Mallasto, Anton
    Hauberg, Soren
    Feragen, Aasa
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [32] Detecting Damage on Wind Turbine Bearings Using Acoustic Emissions and Gaussian Process Latent Variable Models
    Fuentes, Ramon
    Howard, Thomas
    Marshall, Matt B.
    Cros, Elizabeth J.
    Dwyer-Joyce, Rob
    Huntley, Tom
    Hestmo, Rune H.
    [J]. STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2302 - 2309
  • [33] Learning Latent Variable Gaussian Graphical Models
    Meng, Zhaoshi
    Eriksson, Brian
    Hero, Alfred O., III
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1269 - 1277
  • [34] Childhood Malnutrition in Egypt using Geoadditive Gaussian and Latent Variable Models
    Khatab, Khaled
    [J]. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 82 (04): : 653 - 663
  • [35] Gaussian Process Latent Variable Alignment Learning
    Kazlauskaite, Ieva
    Ek, Carl Henrik
    Campbell, Neill D. F.
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 748 - 757
  • [36] Latent variable Gaussian process models: A rank-based analysis and an alternative approach
    Tao, Siyu
    Apley, Daniel W.
    Plumlee, Matthew
    Chen, Wei
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (15) : 4007 - 4026
  • [37] Surface Approximation by Means of Gaussian Process Latent Variable Models and Line Element Geometry
    De Boi, Ivan
    Ek, Carl Henrik
    Penne, Rudi
    [J]. MATHEMATICS, 2023, 11 (02)
  • [38] Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
    Martens, Kaspar
    Campbell, Kieran R.
    Yau, Christopher
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [39] 3D Reconstruction Supported by Gaussian Process Latent Variable Model Shape Priors
    Krenzin, Jens
    Hellwich, Olaf
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (02): : 97 - 112
  • [40] 3D Reconstruction Supported by Gaussian Process Latent Variable Model Shape Priors
    Jens Krenzin
    Olaf Hellwich
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 97 - 112