Chromatic bases for symmetric functions

被引:0
|
作者
Cho, Soojin [1 ]
van Willigenburg, Stephanie [2 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2016年 / 23卷 / 01期
基金
新加坡国家研究基金会;
关键词
chromatic symmetric function; complete graph; star graph; path; cycle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we obtain numerous new bases for the algebra of symmetric functions whose generators are chromatic symmetric functions. More precisely, if {G(k)}(k >= 1) is a set of connected graphs such that G(k) has k vertices for each k, then the set of all chromatic symmetric functions {XG(k)}(k >= 1) generates the algebra of symmetric functions. We also obtain explicit expressions for the generators arising from complete graphs, star graphs, path graphs and cycle graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Vertex Operators for Standard Bases of the Symmetric Functions
    Mike Zabrocki
    Journal of Algebraic Combinatorics, 2001, 13 : 83 - 101
  • [32] Vertex operators for standard bases of the symmetric functions
    Zabrocki, M
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 13 (01) : 83 - 101
  • [33] Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3
    Cho, Soojin
    Hong, Jaehyun
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [34] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    Toumazet, Frederic
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 557 - 576
  • [35] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    Frédéric Toumazet
    Annals of Combinatorics, 2020, 24 : 557 - 576
  • [36] Acyclic orientation polynomials and the sink theorem for chromatic symmetric functions
    Hwang, Byung-Hak
    Jung, Woo-Seok
    Lee, Kang-Ju
    Oh, Jaeseong
    Yu, Sang-Hoon
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 149 : 52 - 75
  • [37] Proper q-caterpillars are distinguished by their Chromatic Symmetric Functions
    Ganesan, Arunkumar
    Narayanan, Narayanan
    Rao, B. V. Raghavendra
    Sawant, Sagar S.
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [38] A counterexample to a conjecture on Schur positivity of chromatic symmetric functions of trees
    Rambeloson, Emmanuella Sandratra
    Shareshian, John
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 4
  • [39] On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions
    S. V. Astashkin
    P. A. Terekhin
    Proceedings of the Steklov Institute of Mathematics, 2022, 319 : 13 - 21
  • [40] Laguerre and Meixner Orthogonal Bases in the Algebra of Symmetric Functions
    Olshanski, Grigori
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (16) : 3615 - 3679