Chromatic bases for symmetric functions

被引:0
|
作者
Cho, Soojin [1 ]
van Willigenburg, Stephanie [2 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2016年 / 23卷 / 01期
基金
新加坡国家研究基金会;
关键词
chromatic symmetric function; complete graph; star graph; path; cycle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we obtain numerous new bases for the algebra of symmetric functions whose generators are chromatic symmetric functions. More precisely, if {G(k)}(k >= 1) is a set of connected graphs such that G(k) has k vertices for each k, then the set of all chromatic symmetric functions {XG(k)}(k >= 1) generates the algebra of symmetric functions. We also obtain explicit expressions for the generators arising from complete graphs, star graphs, path graphs and cycle graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A Criterion for Bases of the Ring of Symmetric Functions
    Vlad Timofte
    Annals of Combinatorics, 2005, 9 : 495 - 499
  • [22] A criterion for bases of the ring of symmetric functions
    Timofte, Vlad
    ANNALS OF COMBINATORICS, 2005, 9 (04) : 495 - 499
  • [23] Chromatic symmetric functions via the group algebra of Sn
    Pawlowski, Brendan
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):
  • [24] The Newton polytope and Lorentzian property of chromatic symmetric functions
    Matherne, Jacob P.
    Morales, Alejandro H.
    Selover, Jesse
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [25] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Tsujie, Shuhei
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1037 - 1048
  • [26] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Shuhei Tsujie
    Graphs and Combinatorics, 2018, 34 : 1037 - 1048
  • [27] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825
  • [28] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [29] A composition method for neat formulas of chromatic symmetric functions
    Wang, David G. L.
    Zhou, James Z. F.
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167
  • [30] A combinatorial formula for the Schur coefficients of chromatic symmetric functions
    Wang, David G. L.
    Wang, Monica M. Y.
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 621 - 630