Chromatic bases for symmetric functions

被引:0
|
作者
Cho, Soojin [1 ]
van Willigenburg, Stephanie [2 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2016年 / 23卷 / 01期
基金
新加坡国家研究基金会;
关键词
chromatic symmetric function; complete graph; star graph; path; cycle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we obtain numerous new bases for the algebra of symmetric functions whose generators are chromatic symmetric functions. More precisely, if {G(k)}(k >= 1) is a set of connected graphs such that G(k) has k vertices for each k, then the set of all chromatic symmetric functions {XG(k)}(k >= 1) generates the algebra of symmetric functions. We also obtain explicit expressions for the generators arising from complete graphs, star graphs, path graphs and cycle graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Characters and chromatic symmetric functions
    Skandera, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [2] Chromatic classical symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2018, 9 (02) : 401 - 409
  • [3] Chromatic Symmetric Functions of Hypertrees
    Taylor, Jair
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [4] Graphs with equal chromatic symmetric functions
    Orellana, Rosa
    Scott, Geoffrey
    DISCRETE MATHEMATICS, 2014, 320 : 1 - 14
  • [5] Plethysms of Chromatic and Tutte Symmetric Functions
    Crew, Logan
    Spirkl, Sophie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [6] On distinguishing trees by their chromatic symmetric functions
    Martin, Jeremy L.
    Morin, Matthew
    Wagner, Jennifer D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 237 - 253
  • [7] H-Chromatic Symmetric Functions
    Eagles, Nancy Mae
    Foley, Angele M.
    Huang, Alice
    Karangozishvili, Elene
    Yu, Annan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [8] SYMMETRIC FUNCTIONS AND CHANGES OF BASES
    VALIBOUZE, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 378 : 323 - 332
  • [9] A graph polynomial from chromatic symmetric functions
    Chan, William
    Crew, Logan
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 633 - 651
  • [10] Chromatic symmetric functions from the modular law
    Abreu, Alex
    Nigro, Antonio
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180