Chromatic Symmetric Functions of Hypertrees

被引:0
|
作者
Taylor, Jair [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2017年 / 24卷 / 02期
基金
美国国家科学基金会;
关键词
symmetric function; quasi symmetric function; chromatic symmetric function; graph coloring; hypergraph; hypertree; GRAPH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The chromatic symmetric function X-H of a hypergraph H is the generating function for all colorings of H so that no edge is monochromatic. When H is an ordinary graph, it is known that X-H is positive in the fundamental quasisymmetric functions F-S, but this is not the case for general hypergraphs. We exhibit a class of hypergraphs H-hypertrees with prime-sized edges for which X-H is F-positive, and give an explicit combinatorial interpretation for the F-coefficients of X-H.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Characters and chromatic symmetric functions
    Skandera, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [2] Chromatic classical symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2018, 9 (02) : 401 - 409
  • [3] Chromatic bases for symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [4] Graphs with equal chromatic symmetric functions
    Orellana, Rosa
    Scott, Geoffrey
    DISCRETE MATHEMATICS, 2014, 320 : 1 - 14
  • [5] Plethysms of Chromatic and Tutte Symmetric Functions
    Crew, Logan
    Spirkl, Sophie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [6] H-Chromatic Symmetric Functions
    Eagles, Nancy Mae
    Foley, Angele M.
    Huang, Alice
    Karangozishvili, Elene
    Yu, Annan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [7] On distinguishing trees by their chromatic symmetric functions
    Martin, Jeremy L.
    Morin, Matthew
    Wagner, Jennifer D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 237 - 253
  • [8] A graph polynomial from chromatic symmetric functions
    Chan, William
    Crew, Logan
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 633 - 651
  • [9] A class of trees determined by their chromatic symmetric functions
    Wang, Yuzhenni
    Yu, Xingxing
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [10] Chromatic symmetric functions from the modular law
    Abreu, Alex
    Nigro, Antonio
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180