Proper q-caterpillars are distinguished by their Chromatic Symmetric Functions

被引:0
|
作者
Ganesan, Arunkumar [1 ]
Narayanan, Narayanan [1 ]
Rao, B. V. Raghavendra [2 ]
Sawant, Sagar S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] IIT Madras, Dept Comp Sci & Engn, Chennai 600036, India
关键词
Chromatic symmetric function; Integer compositions; Caterpillars; U-polynomial; GRAPHS;
D O I
10.1016/j.disc.2024.114162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stanley's Tree Isomorphism Conjecture posits that the chromatic symmetric function can distinguish non-isomorphic trees. This conjecture is already established for caterpillars and other subclasses of trees. We prove the conjecture's validity for a new class of trees that generalize proper caterpillars, thus confirming the conjecture for a broader class of trees. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Proper caterpillars are distinguished by their chromatic symmetric function
    Aliste-Prieto, Jose
    Zamora, Jose
    DISCRETE MATHEMATICS, 2014, 315 : 158 - 164
  • [2] Chromatic symmetric functions of Dyck paths and q-rook theory
    Colmenarejo, Laura
    Morales, Alejandro H.
    Panova, Greta
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 107
  • [3] Characters and chromatic symmetric functions
    Skandera, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [4] Chromatic classical symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2018, 9 (02) : 401 - 409
  • [5] Chromatic Symmetric Functions of Hypertrees
    Taylor, Jair
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [6] Chromatic bases for symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [7] Graphs with equal chromatic symmetric functions
    Orellana, Rosa
    Scott, Geoffrey
    DISCRETE MATHEMATICS, 2014, 320 : 1 - 14
  • [8] Plethysms of Chromatic and Tutte Symmetric Functions
    Crew, Logan
    Spirkl, Sophie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [9] On distinguishing trees by their chromatic symmetric functions
    Martin, Jeremy L.
    Morin, Matthew
    Wagner, Jennifer D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 237 - 253
  • [10] H-Chromatic Symmetric Functions
    Eagles, Nancy Mae
    Foley, Angele M.
    Huang, Alice
    Karangozishvili, Elene
    Yu, Annan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):