Proper q-caterpillars are distinguished by their Chromatic Symmetric Functions

被引:0
|
作者
Ganesan, Arunkumar [1 ]
Narayanan, Narayanan [1 ]
Rao, B. V. Raghavendra [2 ]
Sawant, Sagar S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] IIT Madras, Dept Comp Sci & Engn, Chennai 600036, India
关键词
Chromatic symmetric function; Integer compositions; Caterpillars; U-polynomial; GRAPHS;
D O I
10.1016/j.disc.2024.114162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stanley's Tree Isomorphism Conjecture posits that the chromatic symmetric function can distinguish non-isomorphic trees. This conjecture is already established for caterpillars and other subclasses of trees. We prove the conjecture's validity for a new class of trees that generalize proper caterpillars, thus confirming the conjecture for a broader class of trees. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] A graph polynomial from chromatic symmetric functions
    Chan, William
    Crew, Logan
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 633 - 651
  • [12] Chromatic symmetric functions from the modular law
    Abreu, Alex
    Nigro, Antonio
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [13] A class of trees determined by their chromatic symmetric functions
    Wang, Yuzhenni
    Yu, Xingxing
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [14] On an algorithm for comparing the chromatic symmetric functions of trees
    Heil, S.
    Ji, C.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 210 - 222
  • [15] Chromatic symmetric functions in noncommuting variables revisited
    Dahlberg, Samantha
    van Willigenburg, Stephanie
    ADVANCES IN APPLIED MATHEMATICS, 2020, 112
  • [16] Chromatic symmetric functions and polynomial invariants of trees
    Aliste-Prieto, Jose
    Martin, Jeremy L.
    Wagner, Jennifer D.
    Zamora, Jose
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (11) : 3452 - 3476
  • [17] Extended chromatic symmetric functions and equality of ribbon Schur functions
    Aliniaeifard, Farid
    Wang, Victor
    van Willigenburg, Stephanie
    ADVANCES IN APPLIED MATHEMATICS, 2021, 128
  • [19] On q-symmetric functions and q-quasisymmetric functions
    Yunnan Li
    Journal of Algebraic Combinatorics, 2015, 41 : 323 - 364
  • [20] On q-symmetric functions and q-quasisymmetric functions
    Li, Yunnan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 323 - 364