Proper q-caterpillars are distinguished by their Chromatic Symmetric Functions

被引:0
|
作者
Ganesan, Arunkumar [1 ]
Narayanan, Narayanan [1 ]
Rao, B. V. Raghavendra [2 ]
Sawant, Sagar S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] IIT Madras, Dept Comp Sci & Engn, Chennai 600036, India
关键词
Chromatic symmetric function; Integer compositions; Caterpillars; U-polynomial; GRAPHS;
D O I
10.1016/j.disc.2024.114162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stanley's Tree Isomorphism Conjecture posits that the chromatic symmetric function can distinguish non-isomorphic trees. This conjecture is already established for caterpillars and other subclasses of trees. We prove the conjecture's validity for a new class of trees that generalize proper caterpillars, thus confirming the conjecture for a broader class of trees. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Chromatic symmetric functions via the group algebra of Sn
    Pawlowski, Brendan
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):
  • [22] The Newton polytope and Lorentzian property of chromatic symmetric functions
    Matherne, Jacob P.
    Morales, Alejandro H.
    Selover, Jesse
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [23] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Tsujie, Shuhei
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1037 - 1048
  • [24] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Shuhei Tsujie
    Graphs and Combinatorics, 2018, 34 : 1037 - 1048
  • [25] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825
  • [26] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [27] A composition method for neat formulas of chromatic symmetric functions
    Wang, David G. L.
    Zhou, James Z. F.
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167
  • [28] A combinatorial formula for the Schur coefficients of chromatic symmetric functions
    Wang, David G. L.
    Wang, Monica M. Y.
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 621 - 630
  • [29] Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3
    Cho, Soojin
    Hong, Jaehyun
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [30] Acyclic orientation polynomials and the sink theorem for chromatic symmetric functions
    Hwang, Byung-Hak
    Jung, Woo-Seok
    Lee, Kang-Ju
    Oh, Jaeseong
    Yu, Sang-Hoon
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 149 : 52 - 75