On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains

被引:144
|
作者
Rychkov, VS [1 ]
机构
[1] Univ Jena, Inst Math, D-07743 Jena, Germany
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1112/S0024610799007723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The restrictions B-pq(s)(Omega) and F-pq(s)(Omega) of the Besov and Triebel-Lizorkin spaces of tempered distributions B-pq(s)(R-n) and F-pq(s)(R-n) to Lipschitz domains Omega subset of R-n are studied. For general values of parameters (s is an element of R, p > 0, q > 0) a 'universal' linear bounded extension operator from B-pq(s)(Omega) and F-pq(s)(Omega) into the corresponding spaces on R-n is constructed. The construction is based on a new variant of the Calderon reproducing formula with kernels supported in a fixed cone. Explicit characterizations of the elements of B-pq(s)(Omega) and F-pq(s)(Omega) in terms of their values in Omega are also obtained.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 50 条
  • [21] Besov and Triebel-Lizorkin Capacity in Metric Spaces
    Karak, Nijjwal
    Mondal, Debarati
    [J]. MATHEMATICA SLOVACA, 2023, 73 (04) : 937 - 948
  • [22] Haar functions in weighted Besov and Triebel-Lizorkin spaces
    Malecka, Agnieszka
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 200 : 1 - 27
  • [23] LOCAL AND GLOBAL ESTIMATES FOR HYPERBOLIC EQUATIONS IN BESOV-LIPSCHITZ AND TRIEBEL-LIZORKIN SPACES
    Israelsson, Anders
    Rodriguez-Lopez, Salvador
    Staubach, Wolfgang
    [J]. ANALYSIS & PDE, 2021, 14 (01): : 1 - 44
  • [24] Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori
    Xiong, Xiao
    Xu, Quanhua
    Yin, Zhi
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 252 (1203) : 1 - +
  • [25] Approximation by Holder Functions in Besov and Triebel-Lizorkin Spaces
    Heikkinen, Toni
    Tuominen, Heli
    [J]. CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 455 - 482
  • [26] Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
    Saksman, Eero
    Soto, Tomas
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 98 - 115
  • [27] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    [J]. FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [28] Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces
    Kyriazis, George
    Petrushev, Pencho
    Xu, Yuan
    [J]. STUDIA MATHEMATICA, 2008, 186 (02) : 161 - 202
  • [29] Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators
    The Anh Bui
    Xuan Thinh Duong
    [J]. Journal of Fourier Analysis and Applications, 2015, 21 : 405 - 448
  • [30] An atomic decomposition of variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    [J]. ARMENIAN JOURNAL OF MATHEMATICS, 2009, 2 (01): : 1 - 12