Haar functions in weighted Besov and Triebel-Lizorkin spaces

被引:5
|
作者
Malecka, Agnieszka [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Muckenhoupt weights; Haar wavelets; Besov spaces; Triebel-Lizorkin spaces; Local means; APPROXIMATION NUMBERS; MUCKENHOUPT WEIGHTS; ENTROPY; INTERPOLATION; EMBEDDINGS;
D O I
10.1016/j.jat.2015.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with Haar wavelet bases in function spaces of Besov and Triebel-Lizorkin type with local Muckenhoupt weights. We show that Haar wavelets can be used to characterize such function spaces as far as absolute value of smoothness parameter is small enough and weights fulfill some conditions. The result is based on mapping properties of linear operators involving characteristic functions of dyadic cubes in related spaces and on local means characterization of weighted Besov and Triebel-Lizorkin spaces. (c) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [1] Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces
    Kyriazis, George
    Petrushev, Pencho
    Xu, Yuan
    [J]. STUDIA MATHEMATICA, 2008, 186 (02) : 161 - 202
  • [2] Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    [J]. POSITIVITY, 2012, 16 (02) : 213 - 244
  • [3] Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces
    Izuki, Mitsuo
    Sawano, Yoshihiro
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 103 - 126
  • [4] Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball
    Kyriazis, G.
    Petrushev, P.
    Xu, Yuan
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 : 477 - 513
  • [5] Approximation by Holder Functions in Besov and Triebel-Lizorkin Spaces
    Heikkinen, Toni
    Tuominen, Heli
    [J]. CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 455 - 482
  • [6] On local fractal functions in Besov and Triebel-Lizorkin spaces
    Massopust, Peter R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 393 - 407
  • [8] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    [J]. Analysis in Theory and Applications, 2008, 24 (04) : 336 - 350
  • [9] A Mean Characterization of Weighted Anisotropic Besov and Triebel-Lizorkin Spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (02): : 125 - 147
  • [10] Variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 511 - 522