On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains

被引:144
|
作者
Rychkov, VS [1 ]
机构
[1] Univ Jena, Inst Math, D-07743 Jena, Germany
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1112/S0024610799007723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The restrictions B-pq(s)(Omega) and F-pq(s)(Omega) of the Besov and Triebel-Lizorkin spaces of tempered distributions B-pq(s)(R-n) and F-pq(s)(R-n) to Lipschitz domains Omega subset of R-n are studied. For general values of parameters (s is an element of R, p > 0, q > 0) a 'universal' linear bounded extension operator from B-pq(s)(Omega) and F-pq(s)(Omega) into the corresponding spaces on R-n is constructed. The construction is based on a new variant of the Calderon reproducing formula with kernels supported in a fixed cone. Explicit characterizations of the elements of B-pq(s)(Omega) and F-pq(s)(Omega) in terms of their values in Omega are also obtained.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 50 条
  • [31] Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces
    Noi, Takahiro
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [32] Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    [J]. POSITIVITY, 2012, 16 (02) : 213 - 244
  • [33] Duals of Besov and Triebel-Lizorkin Spaces Associated with Operators
    Georgiadis, Athanasios G.
    Kyriazis, George
    [J]. CONSTRUCTIVE APPROXIMATION, 2023, 57 (02) : 547 - 577
  • [34] Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators
    The Anh Bui
    Xuan Thinh Duong
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (02) : 405 - 448
  • [35] Capacity in Besov and Triebel-Lizorkin spaces with generalized smoothness
    Karak, Nijjwal
    Mondal, Debarati
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [36] Dahlberg degeneracy for homogeneous Besov and Triebel-Lizorkin spaces
    Bourdaud, Gerard
    Moussai, Madani
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 878 - 894
  • [37] Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces
    Izuki, Mitsuo
    Sawano, Yoshihiro
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 103 - 126
  • [38] On local fractal functions in Besov and Triebel-Lizorkin spaces
    Massopust, Peter R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 393 - 407
  • [39] MULTIPLICATION ON BESOV AND TRIEBEL-LIZORKIN SPACES OF POWER WEIGHTS
    Boulares, Hamza Brahim
    Drihem, Douadi
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2023, 68 (02) : 163 - 194
  • [40] Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball
    Kyriazis, G.
    Petrushev, P.
    Xu, Yuan
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 : 477 - 513