On the chromatic number of random regular graphs

被引:20
|
作者
Coja-Oghlan, Amin [1 ]
Efthymiou, Charilaos [2 ]
Hetterich, Samuel [1 ]
机构
[1] Goethe Univ Frankfurt, Math Inst, Frankfurt, Germany
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
基金
欧洲研究理事会;
关键词
Random graphs; Graph coloring; Phase transitions; SHARP CONCENTRATION; INDEPENDENCE; THRESHOLD;
D O I
10.1016/j.jctb.2015.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(n, d) be the random d-regular graph on n vertices. For every integer k exceeding a certain constant k(0) we identify a number 4,01 such that G(n, d) is k-colorable w.h.p. if d < d(k-col) and non-k-colorable w.h.p. if d> d(k-col). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:367 / 439
页数:73
相关论文
共 50 条
  • [31] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 79 - 85
  • [32] Random lifts of graphs: Independence and chromatic number
    Amit, A
    Linial, N
    Matousek, J
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 1 - 22
  • [33] The eternal game chromatic number of random graphs
    Dvorak, Vojtech
    Herrman, Rebekah
    van Hintum, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 95
  • [34] Lower Bounds on the Chromatic Number of Random Graphs
    Ayre, Peter
    Coja-Oghlan, Amin
    Greenhill, Catherine
    COMBINATORICA, 2022, 42 (05) : 617 - 658
  • [35] Distinguishing chromatic number of random Cayley graphs
    Balachandran, Niranjan
    Padinhatteeri, Sajith
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2447 - 2455
  • [36] Cliques and Chromatic Number in Multiregime Random Graphs
    Ganesan, Ghurumuruhan
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 84 (02): : 509 - 533
  • [37] The jump of the clique chromatic number of random graphs
    Lichev, Lyuben
    Mitsche, Dieter
    Warnke, Lutz
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 1016 - 1034
  • [38] Lower Bounds on the Chromatic Number of Random Graphs
    Peter Ayre
    Amin Coja-Oghlan
    Catherine Greenhill
    Combinatorica, 2022, 42 : 617 - 658
  • [39] The Game Chromatic Number of Dense Random Graphs
    Keusch, Ralph
    Steger, Angelika
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [40] Cliques and Chromatic Number in Multiregime Random Graphs
    Ghurumuruhan Ganesan
    Sankhya A, 2022, 84 (2): : 509 - 533