Cliques and Chromatic Number in Multiregime Random Graphs

被引:0
|
作者
Ganesan, Ghurumuruhan [1 ]
机构
[1] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
关键词
Multiregime random graphs; Cliques; Chromatic number; Secondary;
D O I
10.1007/s13171-020-00205-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study cliques and chromatic number in the random subgraphG(n)of the complete graphK(n)onnvertices, where each edge is independently open with a probabilityp(n). AssociatingG(n)with the probability measure P-n, we say that the sequence {P-n} ismultiregimeif the edge probability sequence {p(n)} is not convergent. Using a recursive method we obtain uniform bounds on the maximum clique size and chromatic number for such multiregime random graphs.
引用
收藏
页码:509 / 533
页数:25
相关论文
共 50 条
  • [1] Cliques and Chromatic Number in Multiregime Random Graphs
    Ghurumuruhan Ganesan
    [J]. Sankhya A, 2022, 84 (2): : 509 - 533
  • [2] Large cliques in graphs with high chromatic number
    Haxell, Penny
    MacDonald, Colter
    [J]. DISCRETE MATHEMATICS, 2023, 346 (11)
  • [3] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [4] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    [J]. COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [5] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    [J]. COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [6] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [7] Distance graphs with large chromatic number and without large cliques
    Raigorodskii, A. M.
    Rubanov, O. I.
    [J]. MATHEMATICAL NOTES, 2010, 87 (3-4) : 392 - 402
  • [8] Distance graphs with large chromatic number and without large cliques
    A. M. Raigorodskii
    O. I. Rubanov
    [J]. Mathematical Notes, 2010, 87 : 392 - 402
  • [9] The chromatic number of random regular graphs
    Achlioptas, D
    Moore, C
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 219 - 228
  • [10] The chromatic number of random Cayley graphs
    Alon, Noga
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1232 - 1243