Cliques and Chromatic Number in Multiregime Random Graphs

被引:0
|
作者
Ghurumuruhan Ganesan
机构
[1] Institute of Mathematical Sciences,
[2] HBNI,undefined
来源
Sankhya A | 2022年 / 84卷 / 2期
关键词
Multiregime random graphs; Cliques; Chromatic number; Primary 60J10, 60K35; Secondary: 60C05, 62E10, 90B15, 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study cliques and chromatic number in the random subgraph Gn of the complete graph Kn on n vertices, where each edge is independently open with a probability pn. Associating Gn with the probability measure ℙn, we say that the sequence {ℙn} is multiregime if the edge probability sequence {pn} is not convergent. Using a recursive method we obtain uniform bounds on the maximum clique size and chromatic number for such multiregime random graphs.
引用
收藏
页码:509 / 533
页数:24
相关论文
共 50 条
  • [1] Cliques and Chromatic Number in Multiregime Random Graphs
    Ganesan, Ghurumuruhan
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 84 (02): : 509 - 533
  • [2] Large cliques in graphs with high chromatic number
    Haxell, Penny
    MacDonald, Colter
    [J]. DISCRETE MATHEMATICS, 2023, 346 (11)
  • [3] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [4] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    [J]. COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [5] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    [J]. COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [6] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [7] Distance graphs with large chromatic number and without large cliques
    Raigorodskii, A. M.
    Rubanov, O. I.
    [J]. MATHEMATICAL NOTES, 2010, 87 (3-4) : 392 - 402
  • [8] Distance graphs with large chromatic number and without large cliques
    A. M. Raigorodskii
    O. I. Rubanov
    [J]. Mathematical Notes, 2010, 87 : 392 - 402
  • [9] The chromatic number of random Cayley graphs
    Alon, Noga
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1232 - 1243
  • [10] The chromatic number of random regular graphs
    Achlioptas, D
    Moore, C
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 219 - 228