Solving the Caputo Fractional Reaction-Diffusion Equation on GPU

被引:9
|
作者
Liu, Jie [1 ]
Gong, Chunye [1 ,2 ,3 ]
Bao, Weimin [2 ,3 ]
Tang, Guojian [3 ]
Jiang, Yuewen [4 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Sci & Technol Space Phys Lab, Beijing 100076, Peoples R China
[3] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
[4] Univ Oxford, Dept Engn Sci, Oxford OX2 0ES, England
基金
中国国家自然科学基金;
关键词
PARTICLE-TRANSPORT; PARALLEL ALGORITHM; STABILITY;
D O I
10.1155/2014/820162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a parallel GPU solution of the Caputo fractional reaction-diffusion equation in one spatial dimension with explicit finite difference approximation. The parallel solution, which is implemented with CUDA programming model, consists of three procedures: preprocessing, parallel solver, and postprocessing. The parallel solver involves the parallel tridiagonal matrix vector multiplication, vector-vector addition, and constant vectormultiplication. Themost time consuming loop of vector-vector addition and constant vector multiplication is optimized and impressive performance improvement is got. The experimental results show that the GPU solution compares well with the exact solution. The optimized GPU solution on NVIDIA Quadro FX 5800 is 2.26 times faster than the optimized parallel CPU solution on multicore Intel Xeon E5540 CPU.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A COMPARATIVE STUDY OF SEMI-ANALYTICAL METHODS FOR SOLVING FRACTIONAL-ORDER CAUCHY REACTION-DIFFUSION EQUATION
    Chu, Yu-Ming
    Shah, Nehad Ali
    Ahmad, Hijaz
    Chung, Jae Dong
    Khaled, S. M.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [42] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [43] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [44] Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction-diffusion equation on nonrectangular domains
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1531 - 1547
  • [45] A Numerical Method for Time-Fractional Reaction-Diffusion and Integro Reaction-Diffusion Equation Based on Quasi-Wavelet
    Kumar, Sachin
    Cao, Jinde
    Li, Xiaodi
    COMPLEXITY, 2020, 2020
  • [46] Biological models, monotonicity methods, and solving a discrete reaction-diffusion equation
    Rodriguez, Carson
    Robinson, Stephen B.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2024, 17 (01): : 65 - 84
  • [47] An iterative method for solving fractional diffusion-wave equation involving the Caputo-Weyl fractional derivative
    Derakhshan, Mohammadhossein
    Aminataei, Azim
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (02)
  • [48] Continuity of the Unbounded Attractors for a Fractional Perturbation of a Scalar Reaction-Diffusion Equation
    Belluzi, Maykel
    Bortolan, Matheus C.
    Castro, Ubirajara
    Fernandes, Juliana
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [49] A class of efficient difference method for time fractional reaction-diffusion equation
    Zhang, Junxia
    Yang, Xiaozhong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4376 - 4396
  • [50] Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
    Zheng, Minling
    Liu, Fawang
    Liu, Qingxia
    Burrage, Kevin
    Simpson, Matthew J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 338 : 493 - 510