Solving the Caputo Fractional Reaction-Diffusion Equation on GPU

被引:9
|
作者
Liu, Jie [1 ]
Gong, Chunye [1 ,2 ,3 ]
Bao, Weimin [2 ,3 ]
Tang, Guojian [3 ]
Jiang, Yuewen [4 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Sci & Technol Space Phys Lab, Beijing 100076, Peoples R China
[3] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
[4] Univ Oxford, Dept Engn Sci, Oxford OX2 0ES, England
基金
中国国家自然科学基金;
关键词
PARTICLE-TRANSPORT; PARALLEL ALGORITHM; STABILITY;
D O I
10.1155/2014/820162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a parallel GPU solution of the Caputo fractional reaction-diffusion equation in one spatial dimension with explicit finite difference approximation. The parallel solution, which is implemented with CUDA programming model, consists of three procedures: preprocessing, parallel solver, and postprocessing. The parallel solver involves the parallel tridiagonal matrix vector multiplication, vector-vector addition, and constant vectormultiplication. Themost time consuming loop of vector-vector addition and constant vector multiplication is optimized and impressive performance improvement is got. The experimental results show that the GPU solution compares well with the exact solution. The optimized GPU solution on NVIDIA Quadro FX 5800 is 2.26 times faster than the optimized parallel CPU solution on multicore Intel Xeon E5540 CPU.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A reliable numerical method for solving fractional reaction-diffusion equations
    Yadav, Supriya
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
  • [22] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [23] A capable numerical meshless scheme for solving distributed order time-fractional reaction-diffusion equation
    Habibirad, Ali
    Azin, Hadis
    Hesameddini, Esmail
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [24] Solving Cauchy reaction-diffusion equation by using Picard method
    Behzadi, Shadan Sadigh
    SPRINGERPLUS, 2013, 2
  • [25] NUMERICAL APPROACH TO THE TIME-FRACTIONAL REACTION-DIFFUSION EQUATION
    Qiu, Yu-Yang
    THERMAL SCIENCE, 2019, 23 (04): : 2245 - 2251
  • [26] Convergence analysis of tau scheme for the fractional reaction-diffusion equation
    Jalil Rashidinia
    Elham Mohmedi
    The European Physical Journal Plus, 133
  • [27] Positivity and boundedness preserving schemes for the fractional reaction-diffusion equation
    Yu YanYan
    Deng WeiHua
    Wu YuJiang
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) : 2161 - 2178
  • [28] Positivity and boundedness preserving schemes for the fractional reaction-diffusion equation
    YanYan Yu
    WeiHua Deng
    YuJiang Wu
    Science China Mathematics, 2013, 56 : 2161 - 2178
  • [29] Convergence analysis of tau scheme for the fractional reaction-diffusion equation
    Rashidinia, Jalil
    Mohmedi, Elham
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (10):
  • [30] A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    Liu, Jie
    SCIENTIFIC WORLD JOURNAL, 2014,