Solving the Caputo Fractional Reaction-Diffusion Equation on GPU

被引:9
|
作者
Liu, Jie [1 ]
Gong, Chunye [1 ,2 ,3 ]
Bao, Weimin [2 ,3 ]
Tang, Guojian [3 ]
Jiang, Yuewen [4 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Sci & Technol Space Phys Lab, Beijing 100076, Peoples R China
[3] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
[4] Univ Oxford, Dept Engn Sci, Oxford OX2 0ES, England
基金
中国国家自然科学基金;
关键词
PARTICLE-TRANSPORT; PARALLEL ALGORITHM; STABILITY;
D O I
10.1155/2014/820162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a parallel GPU solution of the Caputo fractional reaction-diffusion equation in one spatial dimension with explicit finite difference approximation. The parallel solution, which is implemented with CUDA programming model, consists of three procedures: preprocessing, parallel solver, and postprocessing. The parallel solver involves the parallel tridiagonal matrix vector multiplication, vector-vector addition, and constant vectormultiplication. Themost time consuming loop of vector-vector addition and constant vector multiplication is optimized and impressive performance improvement is got. The experimental results show that the GPU solution compares well with the exact solution. The optimized GPU solution on NVIDIA Quadro FX 5800 is 2.26 times faster than the optimized parallel CPU solution on multicore Intel Xeon E5540 CPU.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A SINGULAR LIMIT IN A FRACTIONAL REACTION-DIFFUSION EQUATION WITH PERIODIC COEFFICIENTS
    Leculier, Alexis
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) : 565 - 586
  • [32] Novel Evaluation of Fuzzy Fractional Cauchy Reaction-Diffusion Equation
    Shah, Nehad Ali
    El-Zahar, Essam R.
    Dutt, Hina M.
    Arefin, Mohammad Asif
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [33] Propagation in a Fractional Reaction-Diffusion Equation in a Periodically Hostile Environment
    Leculier, Alexis
    Mirrahimi, Sepideh
    Roquejoffre, Jean-Michel
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (02) : 863 - 890
  • [34] On the Limit of Solutions for a Reaction-Diffusion Equation Containing Fractional Laplacians
    Xu, Jiaohui
    Caraballo, Tomas
    Valero, Jose
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (01):
  • [35] Numerical approximations for the nonlinear time fractional reaction-diffusion equation
    Liu, Haiyu
    Lu, Shujuan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1355 - 1375
  • [36] Barycentric rational collocation method for fractional reaction-diffusion equation
    Li, Jin
    AIMS MATHEMATICS, 2023, 8 (04): : 9009 - 9026
  • [37] Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 160 - 169
  • [38] Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives
    Owolabi, Kolade M.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 4093 - 4104
  • [39] Evolving Reaction-Diffusion Systems on GPU
    Yamamoto, Lidia
    Banzhaf, Wolfgang
    Collet, Pierre
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BOOK, 2011, 7026 : 208 - +
  • [40] AN ITERATIVE APPROACH FOR SOLVING FRACTIONAL ORDER CAUCHY REACTION-DIFFUSION EQUATIONS
    Kumar, Manoj
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (03) : 19 - 32