Fractional Reaction-Diffusion Equations

被引:0
|
作者
R. K. Saxena
A. M. Mathai
H. J. Haubold
机构
[1] Jai Narain Vyas University,Department of Mathematics and Statistics
[2] McGill University,Department of Mathematics and Statistics
[3] United Nations,Office for Outer Space Affairs
来源
关键词
Reaction-diffusion; Fractional calculus; Mittag-Leffler function; Laplace transform; Mellin transform; Fox H-function;
D O I
暂无
中图分类号
学科分类号
摘要
In a series of papers, Saxena et al. (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of general nature and include the results reported earlier by many authors, notably by Jespersen et al. (1999) for anomalous diffusion and del-Castillo-Negrete et al. (2003) for reaction-diffusion systems with Lévy flights. The solution has been developed in terms of the H-function in a compact form with the help of Laplace and Fourier transforms. Most of the results obtained are in a form suitable for numerical computation.
引用
收藏
页码:289 / 296
页数:7
相关论文
共 50 条
  • [1] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [2] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    [J]. MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [3] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    [J]. FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [4] On the Speed of Spread for Fractional Reaction-Diffusion Equations
    Engler, Hans
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [5] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [6] Solution of Generalized Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    [J]. Astrophysics and Space Science, 2006, 305 (3)
  • [7] Dynamics of Fractional Delayed Reaction-Diffusion Equations
    Liu, Linfang
    Nieto, Juan J.
    [J]. ENTROPY, 2023, 25 (06)
  • [8] ON FRACTIONAL REACTION-DIFFUSION EQUATIONS INVOLVING UNBOUNDED DELAY
    Tuan, Nguyen Huy
    Hai, Nguyen Minh
    Thach, Tran Ngoc
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (08) : 1709 - 1724
  • [9] A novel analysis of the fractional Cauchy reaction-diffusion equations
    Sarwe, Deepak Umarao
    Raj, A. Stephan Antony
    Kumar, Pushpendra
    Salahshour, Soheil
    [J]. INDIAN JOURNAL OF PHYSICS, 2024,
  • [10] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854