ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS

被引:7
|
作者
Singh, Jagdev [1 ]
Kumar, Devendra [2 ]
Rathore, Sushila [3 ]
机构
[1] Jagan Nath Univ, Dept Math, Jaipur 303901, Rajasthan, India
[2] JaganNath Gupta Inst Engn & Technol, Dept Math, Jaipur 302022, Rajasthan, India
[3] Jagan Nath Univ, Dept Phys, Jaipur 303901, Rajasthan, India
来源
MATEMATICHE | 2013年 / 68卷 / 01期
关键词
Fractional reaction; diffusion equation; Mittag-Leffler function; Caputo derivative; Generalized Riemann-Liouville fractional derivative; Riesz-Feller fractional derivative; Laplace transform; Fourier transform;
D O I
10.4418/2013.68.1.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the solution of a fractional reaction-diffusion equation associated with the generalized Riemann-Liouville fractional derivative as the time derivative and Riesz-Feller fractional derivative as the space-derivative. The results are derived by the application of the Laplace and Fourier transforms in compact and elegant form in terms of Mittag-Leffler function and H-function. The results obtained here are of general nature and include the results investigated earlier by many authors.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [1] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    [J]. FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [2] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [3] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [4] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [5] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    [J]. Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [6] Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    Blackmore, D.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1095 - 1104
  • [7] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [8] Solutions of fractional reaction-diffusion equations in terms of the H-function
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    [J]. BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2007, 35 (04): : 681 - 689
  • [9] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59
  • [10] Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 27 (1-3) : 1 - 11