Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative

被引:9
|
作者
Saxena, R. K. [1 ]
Mathai, A. M. [2 ,3 ]
Haubold, H. J. [2 ,4 ]
机构
[1] Jai Narain Vyas Univ, Dept Math & Stat, Jodhpur 342005, Rajasthan, India
[2] Ctr Math & Stat Sci, Peechi 680653, Kerala, India
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[4] Vienna Int Ctr, United Nat, Off Outer Space Affairs, A-1400 Vienna, Austria
关键词
Mittag-Leffler function; Riesz-Feller fractional derivative; H-function; Riemann-Liouville fractional derivative; Caputo derivative; Laplace transform; Fourier transform; Riesz derivative; KINETIC-EQUATION; TERMS;
D O I
10.1016/j.cnsns.2015.02.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fractional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x, t) which is a nonlinear function governing reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [2] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    [J]. MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [3] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    [J]. FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [4] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [5] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59
  • [6] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [7] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    [J]. Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [8] Solutions of the time fractional reaction-diffusion equations with residual power series method
    Tchier, Fairouz
    Inc, Mustafa
    Korpinar, Zeliha S.
    Baleanu, Dumitru
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (10) : 1 - 10
  • [9] On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations
    Jannelli, Alessandra
    Speciale, Maria Paola
    [J]. AIMS MATHEMATICS, 2021, 6 (08): : 9109 - 9125
  • [10] Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative
    Saxena, Ram K.
    Mathai, Arak M.
    Haubold, Hans J.
    [J]. AXIOMS, 2014, 3 (03) : 320 - 334