On the Steady Solutions of Fractional Reaction-Diffusion Equations

被引:12
|
作者
Fazli, Hossein [1 ]
Bahrami, Fariba [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Fractional reaction-diffusion equations; fractional Sobolev spaces; existence; compact embedding; EULER-LAGRANGE EQUATIONS; DIFFERENTIAL-EQUATIONS; INITIAL CONDITIONS; ORDER; DERIVATIVES; TURBULENCE; EXISTENCE;
D O I
10.2298/FIL1706655F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of weak solutions for stationary fractional reaction-diffusion equations with Riemann-Liouville boundary conditions. An appropriate fractional Hilbert space is introduced and a compact embedding theorem demonstrated. Existence results are established using generalized Weierstrass theorem and relatively simple techniques from nonlinear functional analysis.
引用
收藏
页码:1655 / 1664
页数:10
相关论文
共 50 条
  • [1] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    [J]. MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [3] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [4] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [5] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [6] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    [J]. Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [7] Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    Blackmore, D.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1095 - 1104
  • [8] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [9] Solutions of fractional reaction-diffusion equations in terms of the H-function
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    [J]. BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2007, 35 (04): : 681 - 689
  • [10] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59