Generalized synchronization of commensurate fractional-order chaotic systems: Applications in secure information transmission

被引:17
|
作者
Martinez-Fuentes, Oscar [1 ,2 ]
Javier Montesinos-Garcia, Juan [3 ]
Francisco Gomez-Aguilar, Jose [4 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Elect, Luis Enrique Erro 1, Cholula 72840, Puebla, Mexico
[2] Univ Anahuac Veracruz, Sch Engn, Campus Xalapa,Circuito Arco Sur S-N, Xalapa 91098, Veracruz, Mexico
[3] Univ Tecnol Mixteca, Inst Electon & Mecatron, Carretera Acatlima Km 2-5, Huajuapan De Leon 69000, Oaxaca, Mexico
[4] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Nonlinear fractional-order Liouvillian systems; Generalized synchronization (GS); Chaotic systems; Caputo derivative; Riemann-Liouville integral; Data encryption; SIGNALS;
D O I
10.1016/j.dsp.2022.103494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a class of chaotic nonlinear fractional systems of commensurate order called Liouvillian systems is considered to solve the problem of generalized synchronization. To solve this problem, the master and the slave systems are expressed in the Fractional Generalized Observability Canonical Form (FGOCF), then a fractional-order dynamical control law is designed to achieve the generalized synchronization. The encryption of color images is presented as an application to the proposed synchronization method, the encryption algorithm allows to decrypt data without loss. The synchronization and its applications are then illustrated with numerical examples. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Synchronization of Two Four-wing Fractional-Order Chaotic Systems and Its Applications in Secure Communication
    Jia, Hongyan
    Wang, Qinghe
    [J]. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), 2016, 96 : 619 - 624
  • [22] Fractional dynamical controllers for generalized multi-synchronization of commensurate fractional order Liouvillian chaotic systems
    Cruz-Ancona, Christopher D.
    Martinez-Guerra, Rafael
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (07): : 3054 - 3096
  • [23] SYNCHRONIZATION AND GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS
    Wang, Xing-Yuan
    Zhang, Jing
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (13): : 1695 - 1714
  • [24] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    [J]. EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [25] Synchronization and secure transmission of data in incommensurate fractional-order chaotic systems using a sigmoid-like controller
    Mata-Machuca, Juan L.
    Aguilar-Lopez, Ricardo
    [J]. 2019 IEEE 62ND INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2019, : 666 - 669
  • [26] Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Tarek M. Abed-Elhameed
    Tarek Aboelenen
    [J]. Advances in Continuous and Discrete Models, 2022
  • [27] Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems
    Sayed, Wafaa S.
    Henein, Moheb M. R.
    Abd-El-Hafiz, Salwa K.
    Radwan, Ahmed G.
    [J]. COMPLEXITY, 2017,
  • [28] Generalized Projective Lag Synchronization in Fractional-order Chaotic Systems with Unknown Parameters
    Ma, Yancheng
    Wu, Guaon
    Jiang, Lan
    [J]. 2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 64 - 67
  • [29] GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS
    Wang Ming-Jun
    Wang Xing-Yuan
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (09): : 1283 - 1292
  • [30] Chaotic synchronization between different fractional-order chaotic systems
    Zhou, Ping
    Ding, Rui
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2839 - 2848