Generalized Projective Lag Synchronization in Fractional-order Chaotic Systems with Unknown Parameters

被引:0
|
作者
Ma, Yancheng [1 ]
Wu, Guaon [1 ]
Jiang, Lan [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Railway Vocat Coll Technol, Dept Elect & Elect, Wuhan 430205, Hubei, Peoples R China
关键词
fractional-order systems; chaos; generalized projective lag synchronization; unknown parameters;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new fractional-order chaotic synchronization with unknown parameters called generalized projective lag synchronization is proposed. The method of synchronization is a generalization of projective synchronization and projective lag synchronization. According to the stability theorem of linear fractional order systems, a suitable nonlinear fractional order controller is designed for the synchronization of different structural systems, and the updated equations of unknown parameters are given. One example is given to verify the effectiveness of the proposed method.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [1] Lag projective synchronization of fractional-order delayed chaotic systems
    Zhang, Weiwei
    Cao, Jinde
    Wu, Ranchao
    Alsaadi, Fuad E.
    Alsaedi, Ahmed
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (03): : 1522 - 1534
  • [2] Function projective lag synchronization of fractional-order chaotic systems
    Sha, Wang
    Yu Yong-Guang
    Hu, Wang
    Rahmani, Ahmed
    [J]. CHINESE PHYSICS B, 2014, 23 (04)
  • [3] Function projective lag synchronization of fractional-order chaotic systems
    王莎
    于永光
    王虎
    Ahmed Rahmani
    [J]. Chinese Physics B, 2014, 23 (04) : 175 - 181
  • [4] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    [J]. PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [5] Generalized projective synchronization for fractional-order chaotic systems with different fractional order
    Zhou, Ping
    Ding, Rui
    [J]. ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2106 - +
  • [6] Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems
    Luo Chao
    Wang Xingyuan
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1498 - 1511
  • [7] Projective Lag Synchronization Controller Design for Uncertain Fractional-Order Chaotic Systems
    Lv, Hui
    Zhang, Xiulan
    Liu, Heng
    Xu, Song
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6190 - 6194
  • [8] Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [9] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    [J]. NEUROCOMPUTING, 2016, 173 : 606 - 614
  • [10] Modified generalized projective synchronization of fractional-order chaotic Lu systems
    Liu, Jian
    Liu, Shutang
    Yuan, Chunhua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,