Lag projective synchronization of fractional-order delayed chaotic systems

被引:54
|
作者
Zhang, Weiwei [1 ]
Cao, Jinde [2 ]
Wu, Ranchao [3 ]
Alsaadi, Fuad E. [4 ]
Alsaedi, Ahmed [5 ]
机构
[1] Anqing Normal Univ, Sch Math & Computat Sci, Anqing 246133, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Anhui Univ, Sch Math, Hefei 230039, Anhui, Peoples R China
[4] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
GENERALIZED NEURAL-NETWORKS; EXPONENTIAL STABILITY; DISSIPATIVITY;
D O I
10.1016/j.jfranklin.2018.10.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the lag projective synchronization of fractional-order delayed chaotic systems. The lag projective synchronization is achieved through the use of comparison principle of linear fractional equation at the presence of time delay. Some sufficient conditions are obtained via a suitable controller. The results show that the slave system can synchronize the past state of the driver up to a scaling factor. Finally, two different structural fractional order delayed chaotic systems are considered in order to examine the effectiveness of the lag projective synchronization. Feasibility of the proposed method is validated through numerical simulations. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1522 / 1534
页数:13
相关论文
共 50 条
  • [1] Function projective lag synchronization of fractional-order chaotic systems
    Sha, Wang
    Yu Yong-Guang
    Hu, Wang
    Rahmani, Ahmed
    [J]. CHINESE PHYSICS B, 2014, 23 (04)
  • [2] Function projective lag synchronization of fractional-order chaotic systems
    王莎
    于永光
    王虎
    Ahmed Rahmani
    [J]. Chinese Physics B, 2014, 23 (04) : 175 - 181
  • [3] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    [J]. PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [4] Projective lag synchronization for fractional-order chaotic systems with different orders
    Liu, Heng
    Yin, Zhixiang
    [J]. ICIC Express Letters, 2014, 8 (11): : 3221 - 3227
  • [5] Generalized Projective Lag Synchronization in Fractional-order Chaotic Systems with Unknown Parameters
    Ma, Yancheng
    Wu, Guaon
    Jiang, Lan
    [J]. 2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 64 - 67
  • [6] Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems
    Luo Chao
    Wang Xingyuan
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1498 - 1511
  • [7] Projective Lag Synchronization Controller Design for Uncertain Fractional-Order Chaotic Systems
    Lv, Hui
    Zhang, Xiulan
    Liu, Heng
    Xu, Song
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6190 - 6194
  • [8] LAG FULL STATE HYBRID PROJECTIVE SYNCHRONIZATION IN DIFFERENT FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Tang, Yang
    Fang, Jian-An
    Chen, Liang
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (31): : 6129 - 6141
  • [9] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [10] Generalized projective synchronization for fractional-order chaotic systems with different fractional order
    Zhou, Ping
    Ding, Rui
    [J]. ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2106 - +