Modified generalized projective synchronization of fractional-order chaotic Lu systems

被引:8
|
作者
Liu, Jian [1 ,2 ]
Liu, Shutang [1 ]
Yuan, Chunhua [1 ,2 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
[2] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order system; chaotic system; Lyapunov exponent; modified generalized projective synchronization; LYAPUNOV EXPONENTS; DYNAMICS; EQUATIONS;
D O I
10.1186/1687-1847-2013-374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses new modified generalized projective synchronization (MGPS) of fractional-order chaotic systems based on the stability theory of fractional-order systems, where the drive and response systems could be asymptotically synchronized up to a desired transformation matrix, not a diagonal matrix. MGPS between the hyperchaotic Lorenz system and the Lu system of the base order 0.95 is implemented as an example. Numerical simulations show the effectiveness and feasibility of the method.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Modified generalized projective synchronization of fractional-order chaotic Lü systems
    Jian Liu
    Shutang Liu
    Chunhua Yuan
    [J]. Advances in Difference Equations, 2013
  • [2] Generalized projective synchronization for fractional-order chaotic systems with different fractional order
    Zhou, Ping
    Ding, Rui
    [J]. ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2106 - +
  • [3] Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [4] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    [J]. NEUROCOMPUTING, 2016, 173 : 606 - 614
  • [5] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Xi ZHANG
    Ran-chao WU
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 527 - 538
  • [6] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Cui-Mei Jiang
    Shu-Tang Liu
    Fang-Fang Zhang
    [J]. Machine Intelligence Research, 2018, 15 (05) : 603 - 615
  • [7] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Zhang, Xi
    Wu, Ran-chao
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 527 - 538
  • [8] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Jiang C.-M.
    Liu S.-T.
    Zhang F.-F.
    [J]. International Journal of Automation and Computing, 2018, 15 (5) : 603 - 615
  • [9] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Xi Zhang
    Ran-chao Wu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 527 - 538
  • [10] Modified Generalized Projective Synchronization of Incommensurate Fractional Order Chaotic Systems
    Chao, Song
    De, Cao Jin
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1065 - 1069