Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems

被引:0
|
作者
Tarek M. Abed-Elhameed
Tarek Aboelenen
机构
[1] Assiut University,Department of Mathematics, Faculty of Science
[2] Qassim University,Department of Mathematics, Unaizah College of Sciences and Arts
关键词
Chaotic systems; Generalized fractional order; Mittag–Leffler function; Lypunov direct method; Control methods; Synchronization; 26A33; 33E12; 37C75; 37D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the generalized fractional system (GFS) with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present stability analysis of GFS by two methods. First, the stability analysis of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L) function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct method, we study the M–L stability of our system with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. Using the modified predictor–corrector method, the solutions of GFSs are calculated and they are more complicated than the classical fractional one. Based on linear feedback control, we investigate a theorem to control the chaotic GFSs with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present an example to verify the validity of control theorem. We state and prove a theorem to calculate the analytical formula of controllers that are used to achieve synchronization between two different chaotic GFSs. An example to study the synchronization for systems with orders lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document} is given. We found an agreement between analytical results and numerical simulations.
引用
收藏
相关论文
共 50 条
  • [1] Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Abed-Elhameed, Tarek M.
    Aboelenen, Tarek
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [2] Mittag–Leffler synchronization of fractional-order uncertain chaotic systems
    王乔
    丁冬生
    齐冬莲
    [J]. Chinese Physics B, 2015, (06) : 229 - 234
  • [3] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    [J]. CHINESE PHYSICS B, 2015, 24 (06)
  • [4] Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [5] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    [J]. NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [6] Adaptive Synchronization Strategy between Two Autonomous Dissipative Chaotic Systems Using Fractional-Order Mittag-Leffler Stability
    Liu, Licai
    Du, Chuanhong
    Zhang, Xiefu
    Li, Jian
    Shi, Shuaishuai
    [J]. ENTROPY, 2019, 21 (04)
  • [7] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    [J]. IEEE Control Systems Letters, 2024, 8 : 3243 - 3248
  • [8] Mittag–Leffler stability of nabla discrete fractional-order dynamic systems
    Yingdong Wei
    Yiheng Wei
    Yuquan Chen
    Yong Wang
    [J]. Nonlinear Dynamics, 2020, 101 : 407 - 417
  • [9] Generalized Mittag-Leffler Input Stability of the Fractional-Order Electrical Circuits
    Sene, Ndolane
    [J]. IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 : 233 - 242
  • [10] GENERALIZED SYNCHRONIZATION OF NONIDENTICAL FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Wang Xing-Yuan
    Hu Zun-Wen
    Luo Chao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (30):