Generalized synchronization of commensurate fractional-order chaotic systems: Applications in secure information transmission

被引:17
|
作者
Martinez-Fuentes, Oscar [1 ,2 ]
Javier Montesinos-Garcia, Juan [3 ]
Francisco Gomez-Aguilar, Jose [4 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Elect, Luis Enrique Erro 1, Cholula 72840, Puebla, Mexico
[2] Univ Anahuac Veracruz, Sch Engn, Campus Xalapa,Circuito Arco Sur S-N, Xalapa 91098, Veracruz, Mexico
[3] Univ Tecnol Mixteca, Inst Electon & Mecatron, Carretera Acatlima Km 2-5, Huajuapan De Leon 69000, Oaxaca, Mexico
[4] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Nonlinear fractional-order Liouvillian systems; Generalized synchronization (GS); Chaotic systems; Caputo derivative; Riemann-Liouville integral; Data encryption; SIGNALS;
D O I
10.1016/j.dsp.2022.103494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a class of chaotic nonlinear fractional systems of commensurate order called Liouvillian systems is considered to solve the problem of generalized synchronization. To solve this problem, the master and the slave systems are expressed in the Fractional Generalized Observability Canonical Form (FGOCF), then a fractional-order dynamical control law is designed to achieve the generalized synchronization. The encryption of color images is presented as an application to the proposed synchronization method, the encryption algorithm allows to decrypt data without loss. The synchronization and its applications are then illustrated with numerical examples. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] A practical synchronization approach for fractional-order chaotic systems
    Ping Zhou
    Peng Zhu
    [J]. Nonlinear Dynamics, 2017, 89 : 1719 - 1726
  • [42] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386
  • [43] A New Method on Synchronization of Fractional-Order Chaotic Systems
    Wang, Zhiliang
    Zhang, Huaguang
    Li, Yongfeng
    Sun, Ning
    [J]. 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3557 - +
  • [44] A practical synchronization approach for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Peng
    [J]. NONLINEAR DYNAMICS, 2017, 89 (03) : 1719 - 1726
  • [45] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [46] Prescribed performance synchronization for fractional-order chaotic systems
    刘恒
    李生刚
    孙业国
    王宏兴
    [J]. Chinese Physics B, 2015, (09) : 157 - 164
  • [47] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Zhou, Yan
    Wang, Hongxing
    Liu, Heng
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (03) : 823 - 836
  • [48] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Yan Zhou
    Hongxing Wang
    Heng Liu
    [J]. International Journal of Fuzzy Systems, 2019, 21 : 823 - 836
  • [49] Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Abed-Elhameed, Tarek M.
    Aboelenen, Tarek
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [50] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746