Quantum confinement and band offsets in amorphous silicon quantum wells

被引:4
|
作者
Jarolimek, K. [1 ]
de Groot, R. A. [2 ]
de Wijs, G. A. [2 ]
Zeman, M. [1 ]
机构
[1] Delft Univ Technol, PVMD DIMES, NL-2600 GB Delft, Netherlands
[2] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
关键词
MOLECULAR-DYNAMICS; CRYSTAL INTERFACE; SI; BARRIER; HETEROJUNCTIONS; DEPOSITION; SURFACES; GROWTH; FILMS; OXIDE;
D O I
10.1103/PhysRevB.90.125430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum wells (QWs) are nanostructures consisting of alternating layers of a low and high band-gap semiconductor. The band gap of QWs can be tuned by changing the thickness of the low band-gap layer, due to quantum confinement effects. Although this principle is well established for crystalline materials, there is still controversy for QWs fabricated from amorphous materials: How strong are the confinement effects in amorphous QWs, where, because of the disorder, the carriers are localized to start with? We prepare an atomistic model of QWs based on a-Si: H to gain insight into this problem. The electronic structure of our atomistic QWs model is described with first-principles density functional theory, allowing us to study the confinement effects directly. We find that the quantum confinement effect is rather weak, compared to experimental results on a similar system.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Bonding properties of amorphous silicon and quantum confinement in the mixed phases of silicon nano slabs
    Nourbakhsh, Zahra
    Akbarzadeh, Hadi
    [J]. SOLAR ENERGY, 2019, 184 : 372 - 377
  • [42] Quantum confinement in porous silicon
    Li, XJ
    Zhang, YH
    [J]. PHYSICAL REVIEW B, 2000, 61 (19) : 12605 - 12607
  • [43] Quantum confinement in nanocrystalline silicon
    Ciurea, ML
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2005, 7 (05): : 2341 - 2346
  • [44] Effects of quantum confinement and symmetry on the silicon photonic crystal band gap
    Zhou Nian-Jie
    Huang Wei-Qi
    Miao Xin-Jian
    Wang Gang
    Dong Tai-Ge
    Huang Zhong-Mei
    Yin Jun
    [J]. ACTA PHYSICA SINICA, 2015, 64 (06)
  • [45] DETERMINING ENERGY-BAND OFFSETS IN QUANTUM-WELLS USING ONLY SPECTROSCOPIC DATA
    KOTELES, ES
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 73 (12) : 8480 - 8484
  • [46] SIMPLE FORMULA FOR EXCITON BINDING-ENERGY IN QUANTUM-WELLS WITH ZERO BAND OFFSETS
    GALBRAITH, I
    [J]. PHYSICAL REVIEW B, 1992, 45 (12): : 6950 - 6952
  • [47] Effect of quantum confinement on acceptor binding energy in multiple quantum wells
    Zheng, Weimin
    Song, Shumei
    Lu, Yingbo
    Wang, Aifang
    Tao, Lin
    [J]. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2008, 29 (02): : 310 - 314
  • [48] Quantum confinement of carriers in the type-I quantum wells structure
    Li, Xinxin
    Deng, Zhen
    Jiang, Yang
    Du, Chunhua
    Jia, Haiqiang
    Wang, Wenxin
    Chen, Hong
    [J]. CHINESE PHYSICS B, 2024, 33 (09)
  • [49] Control of quantum confinement in metal-clad InAs quantum wells
    Tsujino, S
    Allen, SJ
    Rüfenacht, M
    Thomas, M
    Zhang, JP
    Speck, J
    Eckhause, T
    Gwinn, B
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 411 - 412
  • [50] Quantum confinement of carriers in the type-I quantum wells structure
    李欣欣
    邓震
    江洋
    杜春花
    贾海强
    王文新
    陈弘
    [J]. Chinese Physics B, 2024, 33 (09) : 557 - 562