Quantum confinement of carriers in the type-I quantum wells structure

被引:0
|
作者
Li, Xinxin [1 ,2 ]
Deng, Zhen [1 ,2 ,3 ]
Jiang, Yang [1 ,2 ]
Du, Chunhua [1 ,2 ,3 ]
Jia, Haiqiang [1 ,2 ,4 ]
Wang, Wenxin [1 ,2 ,4 ]
Chen, Hong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Key Lab Renewable Energy,Beijing Key Lab New Energ, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat & Optoelect Engn, Beijing 100049, Peoples R China
[3] Yangtze River Delta Phys Res Ctr, Liyang 213300, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
energy band; quantum confinement; type-I quantum wells; low-dimensional structures; 73.21.Fg; 73.20.At; 73.63.-b;
D O I
10.1088/1674-1056/ad5d99
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum confinement is recognized to be an inherent property in low-dimensional structures. Traditionally, it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels. However, our previous research has revealed efficient carrier escape in low-dimensional structures, contradicting this conventional understanding. In this study, we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone. By accounting for all wave vectors, we obtain a certain distribution of carrier energy at each quantized energy level, giving rise to the energy subbands. These results enable carriers to escape from the well under the influence of an electric field. Additionally, we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport. Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands, discovering new physical phenomena, and designing novel devices with superior performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum confinement of carriers in the type-I quantum wells structure
    李欣欣
    邓震
    江洋
    杜春花
    贾海强
    王文新
    陈弘
    [J]. Chinese Physics B., 2024, 33 (09) - 562
  • [2] Type-I and Type-II Confinement in Quantum Dots: Excitonic Fine Structure
    Krapek, V.
    Klenovsky, P.
    Sikola, T.
    [J]. ACTA PHYSICA POLONICA A, 2016, 129 (1A) : A66 - A69
  • [3] Study on the Quantum Confinement of Photo-Generated Carriers in Quantum Wells
    Ding, Ding
    Liu, Weiye
    Guo, Jiaping
    Tan, Xinhui
    Zhang, Wei
    Han, Lili
    Wang, Zhaowei
    Gong, Weihua
    Tang, Xiansheng
    [J]. IEEE PHOTONICS JOURNAL, 2023, 15 (03):
  • [4] Lateral confinement of carriers in ultrathin semiconductor quantum wells
    Shtinkov, N
    Desjardins, P
    Masut, RA
    [J]. MICROELECTRONICS JOURNAL, 2003, 34 (5-8) : 459 - 462
  • [5] Quantum confinement in oxide quantum wells
    Stemmer, Susanne
    Millis, Andrew J.
    [J]. MRS BULLETIN, 2013, 38 (12) : 1032 - 1039
  • [6] Quantum confinement in oxide quantum wells
    Susanne Stemmer
    Andrew J. Millis
    [J]. MRS Bulletin, 2013, 38 : 1032 - 1039
  • [7] SPIN RELAXATION IN TYPE-I AND TYPE-II GAAS/ALGAAS QUANTUM WELLS
    VANDERPOEL, WAJA
    SEVERENS, ALGJ
    VANKESTEREN, HW
    FOXON, CT
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1989, 5 (01) : 115 - 118
  • [8] COMPARISON OF OPTICAL NONLINEARITIES OF TYPE-II AND TYPE-I QUANTUM-WELLS
    MEISSNER, K
    FLUEGEL, B
    BINDER, R
    KOCH, SW
    KHITROVA, G
    PEYGAMBARIAN, N
    [J]. APPLIED PHYSICS LETTERS, 1991, 59 (03) : 259 - 261
  • [9] Observation of quantum-confined Stark shifts in SiGe/Si type-I multiple quantum wells
    Li, C
    Yang, QQ
    Wang, HJ
    Wei, HZ
    Yu, JZ
    Wang, QM
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 87 (11) : 8195 - 8197
  • [10] TRAPPING OF CARRIERS IN SINGLE QUANTUM WELLS WITH DIFFERENT CONFIGURATIONS OF THE CONFINEMENT LAYERS
    POLLAND, HJ
    LEO, K
    ROTHER, K
    PLOOG, K
    FELDMANN, J
    PETER, G
    GOBEL, EO
    FUJIWARA, K
    NAKAYAMA, T
    OHTA, Y
    [J]. PHYSICAL REVIEW B, 1988, 38 (11): : 7635 - 7648