Quantum confinement in nanocrystalline silicon

被引:0
|
作者
Ciurea, ML [1 ]
机构
[1] Natl Inst Mat Phys, Bucharest 77125, Romania
来源
关键词
nanocrystalline silicon; electrical transport;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum confinement effects in different kinds of nanocrystalline silicon systems are experimentally and theoretically investigated. Porous silicon structured as a nanowire network and silicon nanodots embedded in amorphous silicon dioxide are studied. The main quantum confinement effect in both cases is represented by the appearance of new energy levels in the silicon band gap. The corresponding energies can be experimentally determined from the current - temperature characteristics, which show an Arrhenius-like behavior. The curves present several activation energies between liquid nitrogen temperature and room temperature. The energy levels can be evaluated from a quantum well model. The fundamental level is located at the top of the valence band. The change of the activation energy is then related with the filling of the levels. The ratios of the consecutive activation energies in the current - temperature characteristics prove that the excitation undergoes the angular momentum conservation law imposed by the applied electric field. The estimation of the mean size of the nanocrystals from the values of the activation energies is in good agreement with the microstructure investigations performed on the samples. The confinement levels are also in good agreement with the photoluminescence measurements..
引用
收藏
页码:2341 / 2346
页数:6
相关论文
共 50 条
  • [1] Quantum confinement in the photoluminescence of nanocrystalline porous silicon
    Stavarache, I.
    Ciurea, M. L.
    Iancu, V.
    [J]. CAS 2005: INTERNATIONAL SEMICONDUCTOR CONFERENCE, 2005, 1-2 : 55 - 58
  • [2] Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon
    Bagolini, L.
    Mattoni, A.
    Fugallo, G.
    Colombo, L.
    Poliani, E.
    Sanguinetti, S.
    Grilli, E.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (17)
  • [3] Quantum confinement model for phototransport processes in nanocrystalline porous silicon
    Ciurea, M. L.
    Stavarache, I.
    Iancu, V.
    [J]. 2006 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, 2007, : 49 - +
  • [4] Quantum confinement modeling of electrical and optical processes in nanocrystalline silicon
    Ciurea, M. L.
    Iancu, V.
    Stavarache, I.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (06): : 2156 - 2160
  • [5] Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states
    Ramirez-Porras, A.
    Garcia, O.
    Vargas, C.
    Corrales, A.
    Solis, J. D.
    [J]. APPLIED SURFACE SCIENCE, 2015, 347 : 471 - 474
  • [6] Quantum confinement in silicon
    Tsu, R
    Filios, A
    Lofgren, C
    Ding, JL
    Zhang, Q
    Morais, J
    Wang, CG
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON QUANTUM CONFINEMENT: NANOSCALE MATERIALS, DEVICES, AND SYSTEMS, 1997, 97 (11): : 341 - 352
  • [7] Quantum confinement in nanocrystalline Si superlattices
    Grom, GF
    Fauchet, PM
    Tsybeskov, L
    McCaffrey, JP
    Labbé, HJ
    Lockwood, DJ
    [J]. STRUCTURE AND ELECTRONIC PROPERTIES OF ULTRATHIN DIELECTRIC FILMS ON SILICON AND RELATED STRUCTURES, 2000, 592 : 363 - 368
  • [8] Quantum confinement in porous silicon
    Li, XJ
    Zhang, YH
    [J]. PHYSICAL REVIEW B, 2000, 61 (19) : 12605 - 12607
  • [9] Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement
    Huang, SY
    Banerjee, S
    Tung, RT
    Oda, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (11) : 7261 - 7265
  • [10] Strong quantum confinement effect in nanocrystalline CdS
    M. Thambidurai
    N. Muthukumarasamy
    S. Agilan
    N. Murugan
    S. Vasantha
    R. Balasundaraprabhu
    T. S. Senthil
    [J]. Journal of Materials Science, 2010, 45 : 3254 - 3258