AN RKHS APPROACH TO ROBUST FUNCTIONAL LINEAR REGRESSION

被引:30
|
作者
Shin, Hyejin [1 ]
Lee, Seokho [2 ]
机构
[1] Samsung Software R&D Ctr, Frontier CS Lab, Suwon 443732, South Korea
[2] Hankuk Univ Foreign Studies, Dept Stat, Yongin 130791, South Korea
基金
新加坡国家研究基金会;
关键词
M-type smoothing splines; outlier-resistant loss function; reproducing kernel Hilbert space; robust functional linear regression; SMOOTHING SPLINES; ESTIMATORS; CONVERGENCE; PREDICTION; RATES;
D O I
10.5705/ss.2014.0063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the theoretical properties of robust estimators for the regression coefficient function in functional linear regression. A robust procedure is provided in which we use outlier-resistant loss functions including non-convex loss functions. Their robust estimates are computed using an iteratively reweighted penalized least-squares algorithm. Using a pseudo data approach, we are able to show that our robust estimators also achieve the same convergence rate for prediction and estimation as the penalized least squares estimator does in the classical functional linear regression. Theoretical developments are demonstrated using numerical studies with various types of robust loss, illustrating the merit of the method.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 50 条
  • [11] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    Yu, Ping
    Zhu, Zhongyi
    Shi, Jianhong
    Ai, Xikai
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 527 - 544
  • [12] Robust estimation for semi-functional linear regression models
    Boente, Graciela
    Salibian-Barrera, Matias
    Vena, Pablo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [13] Local linear estimate of the nonparametric robust regression in functional data
    Belarbi, Faiza
    Chemikh, Souheyla
    Laksaci, Ali
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 128 - 133
  • [14] An RKHS-based approach to double-penalized regression in high-dimensional partially linear models
    Cui, Wenquan
    Cheng, Haoyang
    Sun, Jiajing
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 201 - 210
  • [15] PLS approach for clusterwise linear regression on functional data
    Preda, C
    Saporta, G
    CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 167 - 176
  • [16] Robust estimators in semi-functional partial linear regression models
    Boente, Graciela
    Vahnovan, Alejandra
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 59 - 84
  • [17] RKHS-based functional nonparametric regression for sparse and irregular longitudinal data
    Avery, Matthew
    Wu, Yichao
    Helen Zhang, Hao
    Zhang, Jiajia
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02): : 204 - 216
  • [18] A new RKHS-based global testing for functional linear model
    Xu, Jianjun
    Cui, Wenquan
    STATISTICS & PROBABILITY LETTERS, 2022, 182
  • [19] Mean Parity Fair Regression in RKHS
    Wei, Shaokui
    Liu, Jiayin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [20] ROBUST TEST FOR LINEAR REGRESSION
    THORNBY, JL
    BIOMETRICS, 1972, 28 (02) : 533 - &