PLS approach for clusterwise linear regression on functional data

被引:0
|
作者
Preda, C [1 ]
Saporta, G [1 ]
机构
[1] Univ Lille 2, Lille, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Partial Least Squares (PLS) approach is used for the clusterwise linear regression algorithm when the set of predictor variables forms an L-2-continuous stochastic process. The number of clusters is treated as unknown and the convergence of the clusterwise algorithm is discussed. The approach is compared with other methods via an application to stock-exchange data.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 50 条
  • [1] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [2] An Approach for PLS Regression Modeling of Functional Data
    Wang, Shengshuai
    Wang, Jie
    Wang, Huiwen
    Saporta, Gilbert
    PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 28 - 33
  • [3] Clusterwise PLS regression on a stochastic process
    Preda, C
    Saporta, G
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (01) : 99 - 108
  • [4] Seemingly unrelated clusterwise linear regression for contaminated data
    Gabriele Perrone
    Gabriele Soffritti
    Statistical Papers, 2023, 64 : 883 - 921
  • [5] Seemingly unrelated clusterwise linear regression for contaminated data
    Perrone, Gabriele
    Soffritti, Gabriele
    STATISTICAL PAPERS, 2023, 64 (03) : 883 - 921
  • [6] Constrained clusterwise linear regression
    Plaia, A
    New Developments in Classification and Data Analysis, 2005, : 79 - 86
  • [7] CLUSTERWISE LINEAR-REGRESSION
    SPATH, H
    COMPUTING, 1979, 22 (04) : 367 - 373
  • [8] Nonsmooth nonconvex optimization approach to clusterwise linear regression problems
    Bagirov, Adil M.
    Ugon, Julien
    Mirzayeva, Hijran
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 229 (01) : 132 - 142
  • [9] Seemingly unrelated clusterwise linear regression
    Galimberti, Giuliano
    Soffritti, Gabriele
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 235 - 260
  • [10] Identifiability of models for clusterwise linear regression
    Hennig, C
    JOURNAL OF CLASSIFICATION, 2000, 17 (02) : 273 - 296