Identifiability of models for clusterwise linear regression

被引:170
|
作者
Hennig, C [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, SPST, D-20146 Hamburg, Germany
关键词
partial identifiability; switching regression; mixture model; fixed partition model; change point problem; Gaussian mixtures with covariates;
D O I
10.1007/s003570000022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Identifiability of the parameters is a necessary condition for the existence of consistent estimators. In this paper the identifiability of the parameters of models for data generated by different linear regression distributions with Gaussian errors is investigated. It turns out that such models cause other identifiability problems than do simple Gaussian mixtures. This problem was heretofore ignored; thus there are no satisfying consistency proofs in this area. Three different models are treated: Finite mixture models with random and fixed covariates and a fixed partition model. Counterexamples and sufficient conditions for identifiability are given, including an example for nonidentifiable parameters with an invertible information matrix. The model choice and the interpretation of the parameters are discussed as well as the use of the identifiability concept for fixed partition models. The concept is generalized to "partial identifiability".
引用
收藏
页码:273 / 296
页数:24
相关论文
共 50 条
  • [1] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [2] Models and methods for clusterwise linear regression
    Hennig, C
    [J]. CLASSIFICATION IN THE INFORMATION AGE, 1999, : 179 - 187
  • [3] Identifiablity of Models for Clusterwise Linear Regression
    C. Hennig
    [J]. Journal of Classification, 2000, 17 : 273 - 296
  • [4] Constrained clusterwise linear regression
    Plaia, A
    [J]. New Developments in Classification and Data Analysis, 2005, : 79 - 86
  • [5] CLUSTERWISE LINEAR-REGRESSION
    SPATH, H
    [J]. COMPUTING, 1979, 22 (04) : 367 - 373
  • [6] Seemingly unrelated clusterwise linear regression
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 235 - 260
  • [7] Algorithms for Generalized Clusterwise Linear Regression
    Park, Young Woong
    Jiang, Yan
    Klabjan, Diego
    Williams, Loren
    [J]. INFORMS JOURNAL ON COMPUTING, 2017, 29 (02) : 301 - 317
  • [8] Seemingly unrelated clusterwise linear regression
    Giuliano Galimberti
    Gabriele Soffritti
    [J]. Advances in Data Analysis and Classification, 2020, 14 : 235 - 260
  • [9] Clusterwise support vector linear regression
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    Taheri, Sona
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (01) : 19 - 35
  • [10] A class of fuzzy clusterwise regression models
    D'Urso, Pierpaolo
    Massari, Riccardo
    Santoro, Adriana
    [J]. INFORMATION SCIENCES, 2010, 180 (24) : 4737 - 4762