Identifiability of models for clusterwise linear regression

被引:170
|
作者
Hennig, C [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, SPST, D-20146 Hamburg, Germany
关键词
partial identifiability; switching regression; mixture model; fixed partition model; change point problem; Gaussian mixtures with covariates;
D O I
10.1007/s003570000022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Identifiability of the parameters is a necessary condition for the existence of consistent estimators. In this paper the identifiability of the parameters of models for data generated by different linear regression distributions with Gaussian errors is investigated. It turns out that such models cause other identifiability problems than do simple Gaussian mixtures. This problem was heretofore ignored; thus there are no satisfying consistency proofs in this area. Three different models are treated: Finite mixture models with random and fixed covariates and a fixed partition model. Counterexamples and sufficient conditions for identifiability are given, including an example for nonidentifiable parameters with an invertible information matrix. The model choice and the interpretation of the parameters are discussed as well as the use of the identifiability concept for fixed partition models. The concept is generalized to "partial identifiability".
引用
收藏
页码:273 / 296
页数:24
相关论文
共 50 条
  • [41] A generalized goal programming model for parsimonious robust clusterwise linear regression
    Ismail, Eman
    Rashwan, Mahmoud
    Makary, Nadia
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2019, 22 (01): : 51 - 71
  • [42] Identifiability of linear mixed effects models
    Wang, Wei
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 244 - 263
  • [43] Weighted Clusterwise Linear Regression based on adaptive quadratic form distance
    da Silva, Ricardo A. M.
    de Carvalho, Francisco de A. T.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [44] Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach
    Bagirov, Adil M.
    Mahmood, Arshad
    Barton, Andrew
    [J]. ATMOSPHERIC RESEARCH, 2017, 188 : 20 - 29
  • [45] Fuzzy clusterwise quasi-likelihood generalized linear models
    Heungsun Hwang
    Marc A. Tomiuk
    [J]. Advances in Data Analysis and Classification, 2010, 4 : 255 - 270
  • [46] SOMwise regression: a new clusterwise regression method
    Jorge Muruzábal
    Diego Vidaurre
    Julián Sánchez
    [J]. Neural Computing and Applications, 2012, 21 : 1229 - 1241
  • [47] Incremental DC optimization algorithm for large-scale clusterwise linear regression
    Bagirov, Adil M.
    Taheri, Sona
    Cimen, Emre
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [48] SOMwise regression: a new clusterwise regression method
    Muruzabal, Jorge
    Vidaurre, Diego
    Sanchez, Julian
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (06): : 1229 - 1241
  • [49] Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression
    Giuliano Galimberti
    Lorenzo Nuzzi
    Gabriele Soffritti
    [J]. Statistical Methods & Applications, 2021, 30 : 235 - 268
  • [50] Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms
    Bagirov, A. M.
    Ugon, J.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (01): : 194 - 219