SOMwise regression: a new clusterwise regression method

被引:7
|
作者
Muruzabal, Jorge [2 ]
Vidaurre, Diego [1 ]
Sanchez, Julian [2 ]
机构
[1] Univ Politecn Madrid, Computat Intelligence Grp, Madrid, Spain
[2] Univ Rey Juan Carlos, Madrid, Spain
来源
NEURAL COMPUTING & APPLICATIONS | 2012年 / 21卷 / 06期
关键词
Clusterwise regression; CWR; SOMwise; Clustering; SOM; Neural networks; SOMwiseR; TOPOLOGY PRESERVATION; NETWORKS; MAPS;
D O I
10.1007/s00521-011-0536-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel neural learning architecture for regression data analysis. It combines, at the high level, a self-organizing map (SOM) structure, and, at the low level, a multilayer perceptron at each unit of the SOM structure. The goal is to build a clusterwise regression model, that is, a model recognizing several clusters in the data, where the dependence between predictors and response is variable (typically within some parametric range) from cluster to cluster. The proposed algorithm, called SOMwise Regression, follows closely in the spirit of the standard SOM learning algorithm and has performed satisfactorily on various test problems.
引用
收藏
页码:1229 / 1241
页数:13
相关论文
共 50 条
  • [1] SOMwise regression: a new clusterwise regression method
    Jorge Muruzábal
    Diego Vidaurre
    Julián Sánchez
    [J]. Neural Computing and Applications, 2012, 21 : 1229 - 1241
  • [2] Constrained clusterwise linear regression
    Plaia, A
    [J]. New Developments in Classification and Data Analysis, 2005, : 79 - 86
  • [3] CLUSTERWISE LINEAR-REGRESSION
    SPATH, H
    [J]. COMPUTING, 1979, 22 (04) : 367 - 373
  • [4] Seemingly unrelated clusterwise linear regression
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 235 - 260
  • [5] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [6] Probabilistic Analysis of Pavement Distress Ratings with the Clusterwise Regression Method
    Luo, Zairen
    Yin, Huiming
    [J]. TRANSPORTATION RESEARCH RECORD, 2008, (2084) : 38 - 46
  • [7] Algorithms for Generalized Clusterwise Linear Regression
    Park, Young Woong
    Jiang, Yan
    Klabjan, Diego
    Williams, Loren
    [J]. INFORMS JOURNAL ON COMPUTING, 2017, 29 (02) : 301 - 317
  • [8] Identifiability of models for clusterwise linear regression
    Hennig, C
    [J]. JOURNAL OF CLASSIFICATION, 2000, 17 (02) : 273 - 296
  • [9] Prediction for regularized clusterwise multiblock regression
    Bougeard, S.
    Cariou, V.
    Saporta, G.
    Niang, N.
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2018, 34 (06) : 852 - 867
  • [10] Models and methods for clusterwise linear regression
    Hennig, C
    [J]. CLASSIFICATION IN THE INFORMATION AGE, 1999, : 179 - 187