Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach

被引:58
|
作者
Bagirov, Adil M. [1 ]
Mahmood, Arshad [1 ]
Barton, Andrew [1 ]
机构
[1] Fed Univ Australia, Fac Sci & Technol, Univ Dr,Mount Helen, Ballarat, Vic 3353, Australia
基金
澳大利亚研究理事会;
关键词
Rainfall prediction; Prediction models; Regression analysis; Cluster analysis; Clusterwise linear regression; ARTIFICIAL NEURAL-NETWORK; MODEL; ARIMA; PRECIPITATION; OPTIMIZATION; QUEENSLAND; FORECAST; RUNOFF; INDIA;
D O I
10.1016/j.atmosres.2017.01.003
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [1] PLS approach for clusterwise linear regression on functional data
    Preda, C
    Saporta, G
    [J]. CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 167 - 176
  • [2] Constrained clusterwise linear regression
    Plaia, A
    [J]. New Developments in Classification and Data Analysis, 2005, : 79 - 86
  • [3] CLUSTERWISE LINEAR-REGRESSION
    SPATH, H
    [J]. COMPUTING, 1979, 22 (04) : 367 - 373
  • [4] Nonsmooth nonconvex optimization approach to clusterwise linear regression problems
    Bagirov, Adil M.
    Ugon, Julien
    Mirzayeva, Hijran
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 229 (01) : 132 - 142
  • [5] Seemingly unrelated clusterwise linear regression
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 235 - 260
  • [6] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [7] Algorithms for Generalized Clusterwise Linear Regression
    Park, Young Woong
    Jiang, Yan
    Klabjan, Diego
    Williams, Loren
    [J]. INFORMS JOURNAL ON COMPUTING, 2017, 29 (02) : 301 - 317
  • [8] Identifiability of models for clusterwise linear regression
    Hennig, C
    [J]. JOURNAL OF CLASSIFICATION, 2000, 17 (02) : 273 - 296
  • [9] Models and methods for clusterwise linear regression
    Hennig, C
    [J]. CLASSIFICATION IN THE INFORMATION AGE, 1999, : 179 - 187
  • [10] Clusterwise support vector linear regression
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    Taheri, Sona
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (01) : 19 - 35