Nonsmooth nonconvex optimization approach to clusterwise linear regression problems

被引:24
|
作者
Bagirov, Adil M. [1 ]
Ugon, Julien [1 ]
Mirzayeva, Hijran [1 ]
机构
[1] Univ Ballarat, Sch Sci Informat Technol & Engn, Ballarat, Vic 3353, Australia
关键词
Clusterwise linear regression; Incremental algorithm; Spath algorithm; K-MEANS ALGORITHM; METHODOLOGY;
D O I
10.1016/j.ejor.2013.02.059
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Clusterwise regression consists of finding a number of regression functions each approximating a subset of the data. In this paper, a new approach for solving the clusterwise linear regression problems is proposed based on a nonsmooth nonconvex formulation. We present an algorithm for minimizing this nonsmooth nonconvex function. This algorithm incrementally divides the whole data set into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate a good starting point for solving global optimization problems at each iteration of the incremental algorithm. Such an approach allows one to find global or near global solution to the problem when the data sets are sufficiently dense. The algorithm is compared with the multistart Spath algorithm on several publicly available data sets for regression analysis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [1] Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems
    Adil M. Bagirov
    Julien Ugon
    Hijran G. Mirzayeva
    [J]. Journal of Optimization Theory and Applications, 2015, 164 : 755 - 780
  • [2] Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems
    Bagirov, Adil M.
    Ugon, Julien
    Mirzayeva, Hijran G.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (03) : 755 - 780
  • [3] Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms
    Bagirov, A. M.
    Ugon, J.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (01): : 194 - 219
  • [4] Linear controller retuning approach based on nonconvex nonsmooth optimization
    Lassami, Bilal
    Font, Stephane
    [J]. 2006 IEEE CONFERENCE ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, VOLS 1 AND 2, 2006, : 308 - +
  • [5] Robustness in Nonsmooth Nonconvex Optimization Problems
    Mashkoorzadeh, F.
    Movahedian, N.
    Nobakhtian, S.
    [J]. POSITIVITY, 2021, 25 (02) : 701 - 729
  • [6] Robustness in Nonsmooth Nonconvex Optimization Problems
    F. Mashkoorzadeh
    N. Movahedian
    S. Nobakhtian
    [J]. Positivity, 2021, 25 : 701 - 729
  • [7] Piecewise linear approximations in nonconvex nonsmooth optimization
    M. Gaudioso
    E. Gorgone
    M. F. Monaco
    [J]. Numerische Mathematik, 2009, 113 : 73 - 88
  • [8] Solution of Nonconvex Nonsmooth Stochastic Optimization Problems
    Yu. M. Ermoliev
    V. I. Norkin
    [J]. Cybernetics and Systems Analysis, 2003, 39 (5) : 701 - 715
  • [9] Piecewise linear approximations in nonconvex nonsmooth optimization
    Gaudioso, M.
    Gorgone, E.
    Monaco, M. F.
    [J]. NUMERISCHE MATHEMATIK, 2009, 113 (01) : 73 - 88
  • [10] A Note on the Existence of Nonsmooth Nonconvex Optimization Problems
    Kazufumi Ito
    Karl Kunisch
    [J]. Journal of Optimization Theory and Applications, 2014, 163 : 697 - 706