Nonsmooth nonconvex optimization approach to clusterwise linear regression problems

被引:24
|
作者
Bagirov, Adil M. [1 ]
Ugon, Julien [1 ]
Mirzayeva, Hijran [1 ]
机构
[1] Univ Ballarat, Sch Sci Informat Technol & Engn, Ballarat, Vic 3353, Australia
关键词
Clusterwise linear regression; Incremental algorithm; Spath algorithm; K-MEANS ALGORITHM; METHODOLOGY;
D O I
10.1016/j.ejor.2013.02.059
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Clusterwise regression consists of finding a number of regression functions each approximating a subset of the data. In this paper, a new approach for solving the clusterwise linear regression problems is proposed based on a nonsmooth nonconvex formulation. We present an algorithm for minimizing this nonsmooth nonconvex function. This algorithm incrementally divides the whole data set into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate a good starting point for solving global optimization problems at each iteration of the incremental algorithm. Such an approach allows one to find global or near global solution to the problem when the data sets are sufficiently dense. The algorithm is compared with the multistart Spath algorithm on several publicly available data sets for regression analysis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [31] Seemingly unrelated clusterwise linear regression
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 235 - 260
  • [32] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [33] An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms
    He, Jiefei
    Zhang, Huiling
    Xu, Zi
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (01) : 73 - 92
  • [34] Convergence of Linear Bregman ADMM for Nonconvex and Nonsmooth Problems with Nonseparable Structure
    Chao, Miantao
    Deng, Zhao
    Jian, Jinbao
    [J]. COMPLEXITY, 2020, 2020
  • [35] Identifiability of models for clusterwise linear regression
    Hennig, C
    [J]. JOURNAL OF CLASSIFICATION, 2000, 17 (02) : 273 - 296
  • [36] Algorithms for Generalized Clusterwise Linear Regression
    Park, Young Woong
    Jiang, Yan
    Klabjan, Diego
    Williams, Loren
    [J]. INFORMS JOURNAL ON COMPUTING, 2017, 29 (02) : 301 - 317
  • [37] Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function
    Kamihigashi, Takashi
    Roy, Santanu
    [J]. ECONOMIC THEORY, 2006, 29 (02) : 325 - 340
  • [38] Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function
    Takashi Kamihigashi
    Santanu Roy
    [J]. Economic Theory, 2006, 29 : 325 - 340
  • [39] Subgradient-Based Neural Networks for Nonsmooth Nonconvex Optimization Problems
    Bian, Wei
    Xue, Xiaoping
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06): : 1024 - 1038
  • [40] Difference-of-Convex Algorithm with Extrapolation for Nonconvex, Nonsmooth Optimization Problems
    Phan, Duy Nhat
    Thi, Hoai An Le
    [J]. Mathematics of Operations Research, 49 (03): : 1973 - 1985