An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms

被引:1
|
作者
He, Jiefei [1 ]
Zhang, Huiling [1 ]
Xu, Zi [1 ,2 ]
机构
[1] Shanghai Univ, Coll Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconvex-linear minimax problem; Nonsmooth problem; Iteration complexity; Approximation proximal gradient algorithm;
D O I
10.1007/s10898-024-01383-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-stationary point is upper bounded by O(epsilon-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\varepsilon <^>{-3})$$\end{document}. Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:73 / 92
页数:20
相关论文
共 50 条
  • [1] An Alternating Proximal Gradient Algorithm for Nonsmooth Nonconvex-Linear Minimax Problems with Coupled Linear Constraints
    Zhang, Hui-Ling
    Xu, Zi
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [2] LINEAR CONVERGENCE OF PROXIMAL GRADIENT ALGORITHM WITH EXTRAPOLATION FOR A CLASS OF NONCONVEX NONSMOOTH MINIMIZATION PROBLEMS
    Wen, Bo
    Chen, Xiaojun
    Pong, Ting Kei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 124 - 145
  • [3] Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
    Zhang, Xiaoya
    Barrio, Roberto
    Angeles Martinez, M.
    Jiang, Hao
    Cheng, Lizhi
    [J]. IEEE ACCESS, 2019, 7 : 126515 - 126529
  • [4] An inexact proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth optimization problems
    Jia, Zehui
    Wu, Zhongming
    Dong, Xiaomei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [5] An inexact proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth optimization problems
    Zehui Jia
    Zhongming Wu
    Xiaomei Dong
    [J]. Journal of Inequalities and Applications, 2019
  • [6] Bregman proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
    Department of Mathematics, National University of Defense Technology, Changsha, Hunan
    410073, China
    不详
    不详
    410073, China
    [J]. arXiv,
  • [7] A PROXIMAL MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX AND NONSMOOTH PROBLEMS
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Dang-Khoa Nguyen
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1300 - 1328
  • [8] Linear convergence of proximal incremental aggregated gradient method for nonconvex nonsmooth minimization problems
    Liu, Y. C.
    Xia, F. Q.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (09) : 3445 - 3464
  • [9] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    [J]. OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [10] A Proximal Zeroth-Order Algorithm for Nonconvex Nonsmooth Problems
    Kazemi, Ehsan
    Wang, Liqiang
    [J]. 2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 64 - 71