AN RKHS APPROACH TO ROBUST FUNCTIONAL LINEAR REGRESSION

被引:30
|
作者
Shin, Hyejin [1 ]
Lee, Seokho [2 ]
机构
[1] Samsung Software R&D Ctr, Frontier CS Lab, Suwon 443732, South Korea
[2] Hankuk Univ Foreign Studies, Dept Stat, Yongin 130791, South Korea
基金
新加坡国家研究基金会;
关键词
M-type smoothing splines; outlier-resistant loss function; reproducing kernel Hilbert space; robust functional linear regression; SMOOTHING SPLINES; ESTIMATORS; CONVERGENCE; PREDICTION; RATES;
D O I
10.5705/ss.2014.0063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the theoretical properties of robust estimators for the regression coefficient function in functional linear regression. A robust procedure is provided in which we use outlier-resistant loss functions including non-convex loss functions. Their robust estimates are computed using an iteratively reweighted penalized least-squares algorithm. Using a pseudo data approach, we are able to show that our robust estimators also achieve the same convergence rate for prediction and estimation as the penalized least squares estimator does in the classical functional linear regression. Theoretical developments are demonstrated using numerical studies with various types of robust loss, illustrating the merit of the method.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 50 条
  • [21] A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION
    Yuan, Ming
    Cai, T. Tony
    ANNALS OF STATISTICS, 2010, 38 (06): : 3412 - 3444
  • [22] On the local linear modelization of the nonparametric robust regression for functional time series data
    Chemikh, Souheyla
    Belarbi, Faiza
    Laksaci, Ali
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2019, 58 (03): : 1 - 20
  • [23] Robust estimation for partial functional linear regression models based on FPCA and weighted composite quantile regression
    Cao, Peng
    Sun, Jun
    OPEN MATHEMATICS, 2021, 19 (01): : 1493 - 1509
  • [24] AN RKHS APPROACH TO ROBUST L-2 ESTIMATION AND SIGNAL-DETECTION
    BARTON, RJ
    POOR, HV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) : 485 - 501
  • [25] Robust functional logistic regression
    Akturk, Berkay
    Beyaztas, Ufuk
    Shang, Han Lin
    Mandal, Abhijit
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [26] AN RKHS APPROACH TO ESTIMATE INDIVIDUALIZED TREATMENT RULES BASED ON FUNCTIONAL PREDICTORS
    Fan, Jun
    Lv, Fusheng
    Shi, Lei
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2019, 2 (02): : 169 - 181
  • [27] Functional linear regression with functional response
    Benatia, David
    Carrasco, Marine
    Florens, Jean-Pierre
    JOURNAL OF ECONOMETRICS, 2017, 201 (02) : 269 - 291
  • [28] A Review of Robust Regression and Diagnostic Procedures in Linear Regression
    Nethal K.Jajo
    Acta Mathematicae Applicatae Sinica(English Series), 2005, (02) : 209 - 224
  • [29] A review of robust regression and diagnostic procedures in linear regression
    Jajo N.K.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (2) : 209 - 224
  • [30] A Distributionally Robust Optimization Approach for Multivariate Linear Regression under the Wasserstein Metric
    Chen, Ruidi
    Paschalidis, Ioannis Ch.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 3655 - 3660