AN RKHS APPROACH TO ROBUST FUNCTIONAL LINEAR REGRESSION

被引:30
|
作者
Shin, Hyejin [1 ]
Lee, Seokho [2 ]
机构
[1] Samsung Software R&D Ctr, Frontier CS Lab, Suwon 443732, South Korea
[2] Hankuk Univ Foreign Studies, Dept Stat, Yongin 130791, South Korea
基金
新加坡国家研究基金会;
关键词
M-type smoothing splines; outlier-resistant loss function; reproducing kernel Hilbert space; robust functional linear regression; SMOOTHING SPLINES; ESTIMATORS; CONVERGENCE; PREDICTION; RATES;
D O I
10.5705/ss.2014.0063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the theoretical properties of robust estimators for the regression coefficient function in functional linear regression. A robust procedure is provided in which we use outlier-resistant loss functions including non-convex loss functions. Their robust estimates are computed using an iteratively reweighted penalized least-squares algorithm. Using a pseudo data approach, we are able to show that our robust estimators also achieve the same convergence rate for prediction and estimation as the penalized least squares estimator does in the classical functional linear regression. Theoretical developments are demonstrated using numerical studies with various types of robust loss, illustrating the merit of the method.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 50 条
  • [41] Greedy method for robust linear regression
    Sun, Tao
    Cheng, Lizhi
    Jiang, Hao
    NEUROCOMPUTING, 2017, 243 : 125 - 132
  • [42] ITERATIVE RANDOMIZED ROBUST LINEAR REGRESSION
    Kopsinis, Yannis
    Chouvardas, Symeon
    Theodoridis, Sergios
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 5436 - 5440
  • [43] Sector Based Linear Regression, a New Robust Method for the Multiple Linear Regression
    Nagy, Gabor
    ACTA CYBERNETICA, 2018, 23 (04): : 1017 - 1038
  • [44] Functional linear regression with derivatives
    Mas, Andre
    Pumo, Besnik
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (01) : 19 - 40
  • [45] Prediction in functional linear regression
    Cai, T. Tony
    Hall, Peter
    ANNALS OF STATISTICS, 2006, 34 (05): : 2159 - 2179
  • [46] ADAPTIVE FUNCTIONAL LINEAR REGRESSION
    Comte, Fabienne
    Johannes, Jan
    ANNALS OF STATISTICS, 2012, 40 (06): : 2765 - 2797
  • [47] Presmoothing in functional linear regression
    Martinez-Calvo, Adela
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 223 - 229
  • [48] PRESMOOTHING IN FUNCTIONAL LINEAR REGRESSION
    Ferraty, Frederic
    Gonzalez-Manteiga, Wenceslao
    Martinez-Calvo, Adela
    Vieu, Philippe
    STATISTICA SINICA, 2012, 22 (01) : 69 - 94
  • [49] A note on functional linear regression
    Baillo, Amparo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (05) : 657 - 669
  • [50] Bootstrap in functional linear regression
    Gonzalez-Manteiga, Wenceslao
    Martinez-Calvo, Adela
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 453 - 461