Classical and Quantum Superintegrability of Stackel Systems

被引:4
|
作者
Blaszak, Maciej [1 ]
Marciniak, Krzysztof [2 ]
机构
[1] Adam Mickiewicz Univ, Div Math Phys, Fac Phys, Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, Linkoping, Sweden
关键词
Hamiltonian systems; classical and quantum superintegrable systems; Stackel systems; Hamilton-Jacobi theory; Stackel transform; INTEGRABLE HAMILTONIAN-SYSTEMS; DIMENSIONAL CURVED SPACES; MAXIMAL SUPERINTEGRABILITY; BENENTI SYSTEMS;
D O I
10.3842/SIGMA.2017.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss maximal superintegrability of both classical and quantum Stackel systems. We prove a sufficient condition for a flat or constant curvature Stackel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stackel transform to preserve maximal superintegrability and we apply this condition to our class of Stackel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Classical and quantum superintegrability with applications
    Miller, Willard, Jr.
    Post, Sarah
    Winternitz, Pavel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (42)
  • [2] Superintegrability and Higher-Order Constants for Classical and Quantum Systems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2011, 74 (06) : 914 - 918
  • [3] Superintegrability and higher-order constants for classical and quantum systems
    E. G. Kalnins
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2011, 74 : 914 - 918
  • [4] Transformation of the Stackel marices preserving superintegrability
    Tsiganov, A. V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [5] Tools for Verifying Classical and Quantum Superintegrability
    Kalnins, Ernest G.
    Kress, Jonathan M.
    Miller, Willard, Jr.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [6] Coupling constant metamorphosis, the Stackel transform and superintegrability
    Post, Sarah
    SYMMETRIES IN NATURE, 2010, 1323 : 265 - 274
  • [7] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [8] Classical multiseparable Hamiltonian systems, superintegrability and Haantjes geometry
    Reyes Nozaleda, Daniel
    Tempesta, Piergiulio
    Tondo, Giorgio
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [9] Superintegrability with third-order integrals in quantum and classical mechanics
    Gravel, S
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) : 5902 - 5912
  • [10] Superintegrability and higher order integrals for quantum systems
    Kalnins, E. G.
    Kress, J. M.
    Miller, W., Jr.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (26)